

ACUTE LEUKEMIA

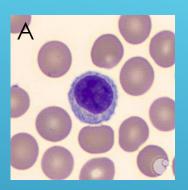
Matthew Ulrickson, MD

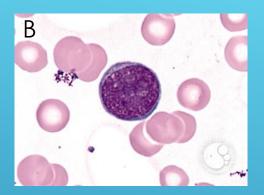
Banner MD Anderson Cancer Center

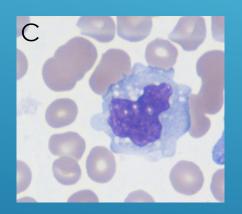
September 6, 2022

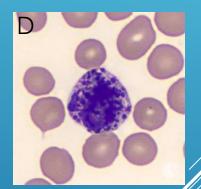
OBJECTIVES

- Discuss the clinical presentation and diagnosis of acute leukemia
- Discuss the impact of molecular features on prognosis and management
- Discuss up front management of APL and ALL


CASE 1


- 32yo resident presents with sore throat and fever
- Cervical adenopathy is present on exam
- ➤ CBC: 35>35%<35k




WHICH OF THE FOLLOWING IS A BLAST?

- > 92% Other
- ▶ 4% Lymph
- ▶ 4% Neutrophils

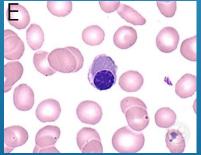


Image courtesy of Peter Maslak

PERIPHERAL SMEAR

- > 92% Blasts
- > 4% Lymph
- > 4% Neutrophils
- He was diagnosed with Ph+ Acute Lymphoblastic Leukemia

- Addition of which of the following medications to Induction chemotherapy is recommended?
 - > A. Ruxolitinib
 - > B. Gilteritinib
 - ▶ C. Ponatinib
 - D. Rituximab
 - ► E. Blinatumomab

CASE 2

- > 52yo man develops intermittent fevers x 2 weeks
- Later, chest pain, dyspnea on exertion, followed by marked fatigue.
- No other B symptoms and no bruising or bleeding.
- No other PMHx
- ▶ 1 full brother, 1 full sister
- Exam: Temp 37.3, HR 117, BP 107/54, RR 24
- Conjunctival rim pallor noted, tachycardic with systolic murmur present at the apex. No LAD or HSM

INITIAL TESTING

► CBC: 6.9>2.6<79 MCV 100

INITIAL TESTING

- ► CBC: 6.9>2.6<139 MCV 100
 - > 32% neutrophils, 6% bands, 2% lymphocytes, 1% monocytes, 1% metamyelocytes, 1% myelocytes and 53% 'other' cells.
- Peripheral smear
 - Atypical immature cell population with high N:C ratio,

nucleoli

► Reticulocyte 0.3%; absolute 2000/µl

Cr 0.8, total bilirubin 0.4, LDH 392, albumin 3.7, AST 45, ALT 145, Banner MDAnderson

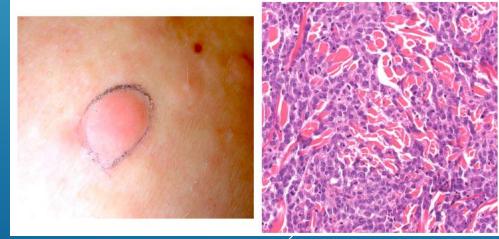
CLINICAL SYMPTOMS OF AML

- Bone Marrow Failure (Cytopenias)
 - Anemia dyspnea, pallor, chest pain
 - Neutropenia infections
 - Thrombocytopenia bleeding, petechiae
- Coagulopathy
 - esp APL, Acute myelomonocytic leukemio
- Tissue invasion

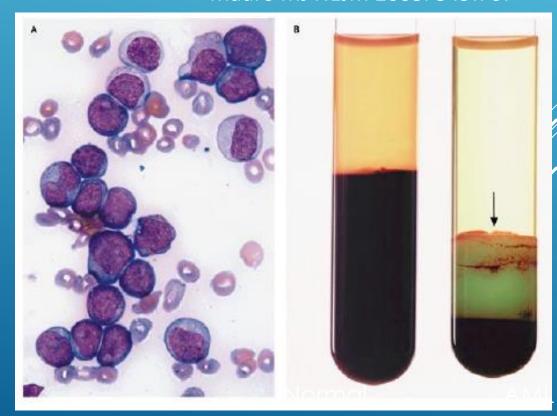
TISSUE INVASION IN AML (MYELOID SARCOMA = AML)

 Associated with high WBC, monocytic subtypes, CD56+

Can Involve


- spleen
- + gums
- perianal
- + skin
- + renal
- + lung

LEUKEMIA CUTIS/CHLOROMA

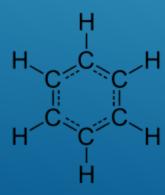


Sauter and Jacky *NEJM* 1998. 338:969

HIGH CIRCULATING BLASTS

- Hypoglycemia Pseudo: **Hypoxia**
- > Hyperkalemia
- > Elevated Lactate

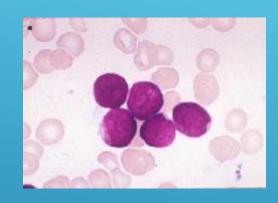
Mauro MJ NEJM 2003. 349:767



RISK FACTORS FOR AML

- Increasing Age
 - \triangleright Median age at dx = 68yo (34% of pts >75yo)
- Prior chemotherapy or radiation (5-10yr latency)
 - Topoisomerase II inhibitors and alkylating agents
- Prior hematologic disorder such as MDS, MPN
 - Clonal hematopoiesis (mutations) slight predisposition
- Benzene exposure
- Most have no apparent cause

EVALUATION OF PATIENT WITH AML


- ►Initial triage
 - History and Physical
 - CBC with differential (look at the peripheral smear)
 - +BMP, LFTs, uric acid, ABO type and screen
- PT, PTT, fibrinogen

EVALUATION OF PATIENT WITH AML

- ▶ Initial triage
 - History and Physical
 - CBC with differential (look at the peripheral smear)
 - ← BMP, LFTs, uric acid, ABO type and screen
 - PT, PTT, fibrinogen


- ▶ Diagnosis
 - -Bone marrow biopsy
 - FISH and cytogenetics, flow cytometry
 - -Molecular: NGS (next generation sequencing) panel
 - (can be sent on PB if circulating blasts)
 - If circulating blasts, send peripheral blood for flow cytometry (STAT) to make dx

EVALUATION OF PATIENT WITH AML

▶ Initial triage

- History and Physical
- CBC with differential (look at the peripheral smear)
- ← BMP, LFTs, uric acid, ABO type and screen
- PT, PTT, fibrinogen

Diagnosi:

- Bone marrow biopsy
- FISH and cytogenetics, flow cytometry
- Molecular: NGS molecular panel (can be sent on PB too)
- If circulating blasts, send peripheral blood for flow cytometry (STAT) to make dx

▶Plan ahead

- +HLA typing (Type I for platelets, Type I and II for SCT)
- Identify siblings and brief health history, CMV serostatus
- Consideration of future fertility

- Leukostasis
- Pulmonary or neurological symptoms related to increased serum viscosity
 - Which of the following patients is most likely to have leukostasis?
 - > A. CML with WBC of 300k
 - B. ALL with WBC of 180k
 - C. CLL with WBC of 500k
 - D. AML with WBC of 120k
 - E. Cdiff with WBC of 70k

- Leukostasis
- Pulmonary or neurological symptoms related to increased serum viscosity
 - Which of the following patients is most likely to have leukostasis?
 - A. CML with WBC of 300k
 - B. ALL with WBC of 180k
 - C. CLL with WBC of 500k
 - ▶ D. AML with WBC of 120k
 - E. Cdiff with WBC of 70k

- Leukostasis
- Pulmonary or neurological symptoms related to increased serum viscosity
 - + Can occur
 - when myeloid blast count >50-100k
 - When lymphoid blast count >400k
 - rare in CLL, CML

- Leukostasis
- Pulmonary or neurological symptoms related to increased serum viscosity
 - + Can occur
 - when myeloid <u>blast count</u> >50-100k
 - When lymphoid blast count >400k
 - rare in CLL, CML
- DIC (esp APL and monocytic)
 - Aggressive product replacement
- Initial treatment can trigger SIRS
- Tumor lysis syndrome

HOW SOON TO TREAT THE OTHERS?

- Sekeres et al Blood 2009. 113:38
 - No increase in mortality when treatment started within 5 days for patients >60yo.
 - In younger, earlier the better
- Obtain necessary diagnostic information prior to selecting regimen
 - Echocardiogram
 - Central line (anthracycline is vascular irritant, extravasation toxicity)

DAY 1

- Only day 0 in transplant
- Day 1 = firstday ofchemotherapy
 - Knowing how long since last chemo lets us anticipate and interpret

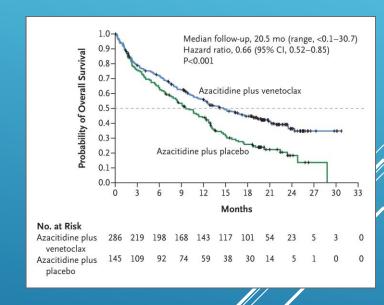
7+3

- Induction
 - Anthracycline (3 days)
 - Daunorubicin 60-90mg/m2 better than 45mg
 - Idarubicin 10-12mg/m2
 - Mitoxantrone 12-15mg/m2
 - Cytarabine (ara-C) 7 days continuous infusion
 - 100mg/m2 better than 200mg/m2

Berman et al. Blood 1991. 77:1666 Ohtake et al. Blood 2011. 117:2358 Rowe et al. Blood 2004. 103:479 Wiernik et al. Blood 1992. 79:313

5+1

- Mitoxantrone/AraC (high dose) at BMDACC
 - Lower Therapy-related mortality in older patients vs 7+3
 - Other AML trials show better CR rate with high dose AraC in young patients


MORTALITY FROM 7+3 INDUCTION AT 30 DAYS

	Age			
	< 56	56 - 65	65 - 75	> 75
Patient #	364	242	270	79
ECOG PS				
0	2%	11%	12%	14%
1	3%	5%	16%	18%
2	2%	18%	31%	50%
3	0%	29%	47%	82%

HYPOMETHYLATING AGENTS WITH VENETOCLAX IN AML

- >75yo and/or ineligible for induction chemotherapy
- Venetoclax plus azacitidine or decitabine (HMA)
- Median age 76yo, poor risk cytogenetics in most
- \triangleright 67% = CR (37%) or CRi (30%)
- Median overall survival 14.7m vs 9.6m in control arm (HMA alone)
- > 7% death within 30 days unrelated to AML

DAY 3-7

MD Anderson

Making Cancer History®

- The pathology results begin to return
 - inv16 by FISH,confirmed bycytogenetics
 - cKIT mutationadded =negative
 - FLT3 ITD, NPM1,CEPBA, IDHnegative

DAY 3-7

Making Cancer History

- The pathology results begin to return
 - inv16 by FISH,confirmed bycytogenetics
 - cKIT mutationadded =negative
 - FLT3 ITD, NPM1,CEPBA negative

So what?!?

WHO AML CATEGORIZATION

Acute myeloid leukemia (AML) and related neoplasms AML with recurrent genetic abnormalities AML with t(8;21)(q22;q22.1);RUNX1-RUNX1T1 AML with inv(16)(p13.1q22) or t(16;16)(p13.1;q22);CBFB-MYH11 APL with PML-RARA AML with t(9;11)(p21.3;q23.3);MLLT3-KMT2A AML with t(6;9)(p23;q34.1); DEK-NUP214 AML with inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2); GATA2, MECOM AML (megakaryoblastic) with t(1;22)(p13.3;q13.3);RBM15-MKL1 Provisional entity: AML with BCR-ABL1 AML with mutated NPM1 AML with biallelic mutations of CEBPA Provisional entity: AML with mutated RUNX1 AML with myelodysplasia-related changes Therapy-related myeloid neoplasms AML, NOS AML with minimal differentiation AML without maturation AML with maturation Acute myelomonocytic leukemia Acute monoblastic/monocytic leukemia Pure erythroid leukemia Acute megakaryoblastic leukemia Acute basophilic leukemia Acute panmyelosis with myelofibrosis Myeloid sarcoma Myeloid proliferations related to Down syndrome Transient abnormal myelopoiesis (TAM) Myeloid leukemia associated with Down syndrome

>20% blasts in PB or BM usually required

WHO AML CATEGORIZATION

Acute myeloid leukemia (AML) and related neoplasms

AML with recurrent genetic abnormalities

AML with t(8;21)(q22;q22.1);RUNX1-RUNX1T1

AML with inv(16)(p13.1q22) or t(16;16)(p13.1;q22);CBFB-MYH11

APL with PML-RARA

AML with t(9;11)(p21.3;q23.3);MLLT3-KMT2A

AML with t(6;9)(p23;q34.1); DEK-NUP214

AML with inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2); GATA2, MECOM

AML (megakaryoblastic) with t(1;22)(p13.3;q13.3);RBM15-MKL1

Provisional entity: AML with BCR-ABL1

AML with mutated NPM1

AML with biallelic mutations of CEBPA

Provisional entity: AMI with mutated RUNX1

M0, M1, M2, M4, M5, M6, M7 MMMMEAN NOTHING!

Acute myelomonocytic leukemia

Acute monoblastic/monocytic leukemia

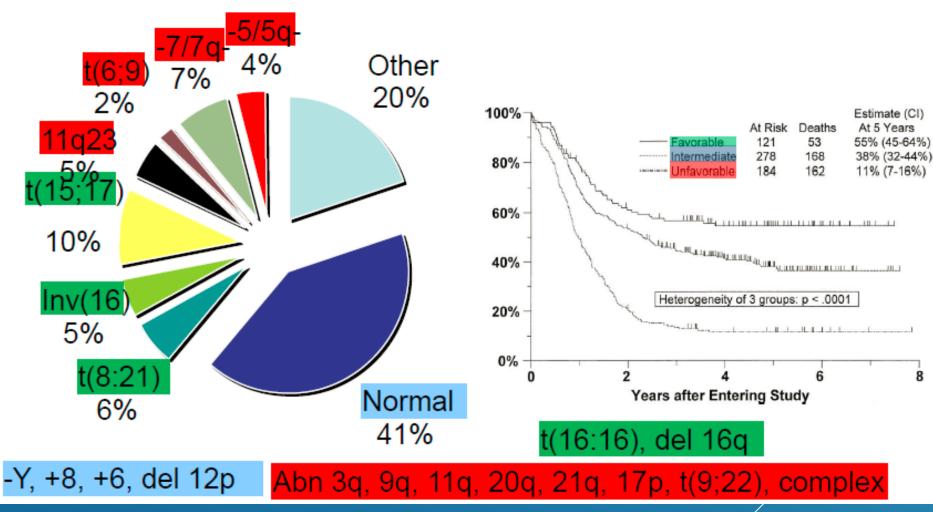
Pure erythroid leukemia

Acute megakaryoblastic leukemia

Acute basophilic leukemia

Acute panmyelosis with myelofibrosis

Myeloid sarcoma


Myeloid proliferations related to Down syndrome

Transient abnormal myelopoiesis (TAM)

Myeloid leukemia associated with Down syndrome

>>20% blasts in PB or BM required

Clonal Cytogenetic Abnormalities in Adult AML

ON TARGET MUTATIONS HELP OPTIMALLY TREAT AML

- Current targeted medicines available:
 - FLT3 + = midostaurin, gilteritinib
 - ► IDH2 + = enasidenib
 - ► IDH1 + = ivosidenib
 - CD33 = gemtuzumab
 - Many others in clinical trials

<u>Stein, EM et al. Blood.</u> 2017 Aug 10;130(6):722-731. Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia.

Stone, RM et al. N Engl J Med. 2017 Aug 3;377(5):454-464.

Midostaurin plus Chemotherapy for Acute Myeloid Leukemia with a FLT3 Mutation.

SO WHAT IS NEXT?

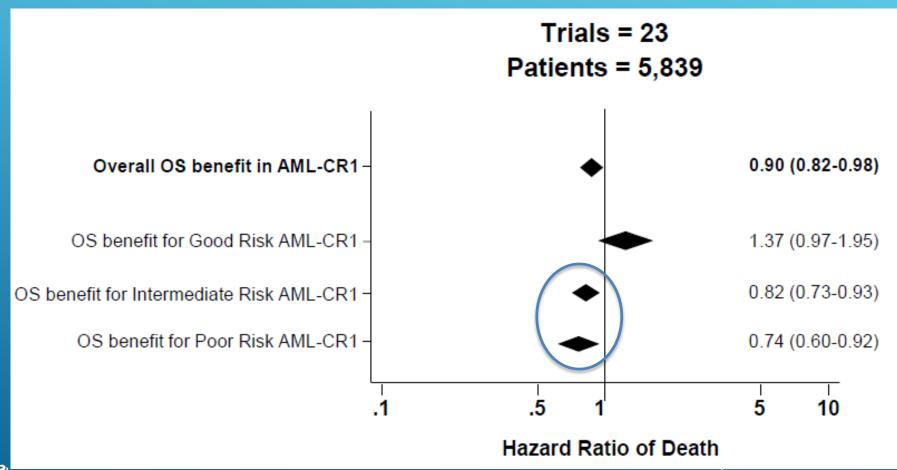
- Need to achieve complete remission (CR)
 - 4 <5% blasts by morphology AND Plt >100k and ANC >1.0
 - + Day 14 marrow tells us some, but only part of CR definition
 - CR is one of the best predictors of OS for individual patient
- ▶ If not in CR next line therapy
 - Minimal residual disease = CR, but with detectable disease by flow/FISH/molecular
- ➤ If in CR not done yet...

MD Anderson

Making Cancer History

AML IN CR1

- Consolidation with Cytarabine x 3-4 cycles
 - Burnett et al JCO
 suggests total of 4
 (3 consolidation)
 is just as good as
 5


Hematopoietic Stem Cell Transplant (HCT)

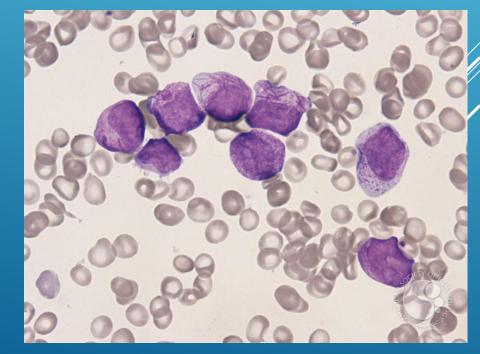
META-ANALYSIS OF RCTS OF HCT FOR AML IN CR1

INDICATIONS FOR ALLOGENEIC SCT IN AML

- Primary Induction Failure (Primary Refractory)
- Second (CR2) or later remission
- Relapsed disease
- > CR1
 - Intermediate risk
 - Adverse risk cytogenetics
 - Secondary AML (MDS, prior chemotherapy)
 - Persistent MRD detectable

OUR PATIENT

- Enters a complete remission after induction
- Completes 3 additional cycles of consolidation
- Currently remains in remission, back at work, with regular follow up

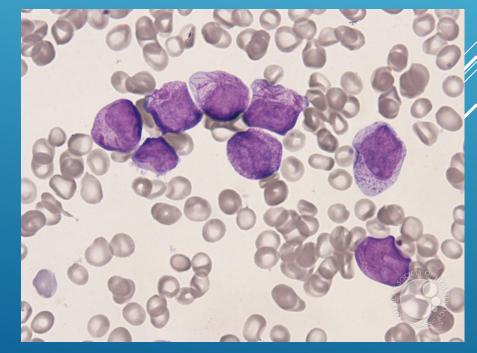


- 44yo woman presents to the ED with bleeding gums and a non-blanching erythematous rash.
 Labs as follow:
- ► CBC: WBC 1.9>7.2<5
- ► INR 2.6 PTT 48 Fibrinogen 93
- Peripheral smear is below.

Which of the following medications do you

recommend?

- ▶ A. Doxycycline
- ► B. ATRA
- > C. PCC
- D. Dasatinib
- ▶ E. Aminocaproic Acid

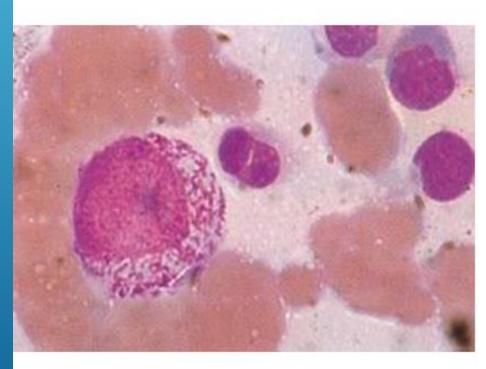


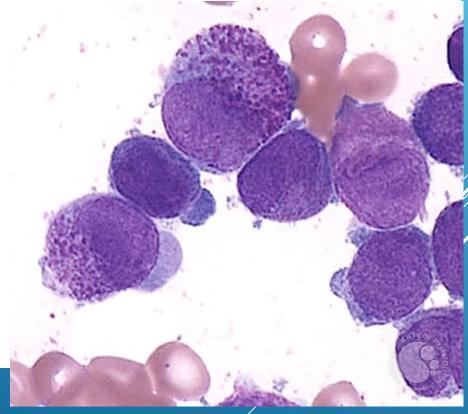
- 44yo woman presents to the ED with bleeding gums and a non-blanching erythematous rash. Labs as follow:
- ► CBC: WBC 1.9>7.2<5
- ► INR 2.6 PTT 48 Fibrinogen 93
- Peripheral smear is below.

Which of the following medications do you

recommend?

- > A. Doxycycline
- ► B. ATRA (Tretinoin)
- > C. PCC
- D. Dasatinib
- ▶ E. Aminocaproic Acid




ACUTE PROMYELOCYTIC LEUKEMIA (APL)

APL

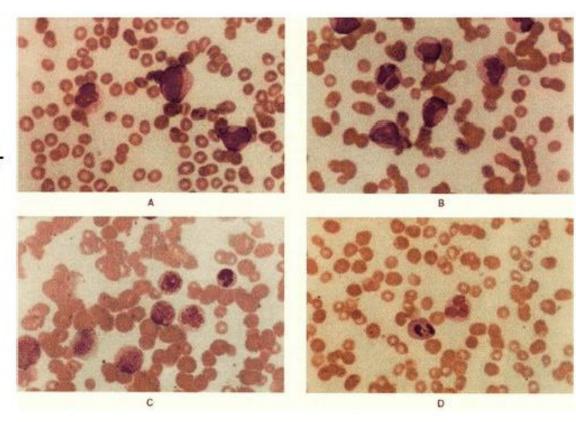
t(15;17)(q22;q12)

AGGRESSIVE EARLY CARE FOR APL

- Early mortality (within days of diagnosis) ~5-10%
 - Bleeding
 - Bleeding
 - Intracranial bleeding
- Start ATRA as soon as suspected
 - If wrong, no harm done (as long as HCG negative)
 - Do not wait for testing results to start but send t(15;17)

- Long-term cure rate >95%
- ATRA/Arsenic

Aggressive blood product transfusion to decrease bleeding risk (cryo, plt)


ALL-TRANS RETINOIC ACID

Tretinoin

Clinical response

- Associated with maturation of leukemic clone
- Expression of PML/RARα decreased

WBC increases Reduced relapse

ATRA Toxicity

"APL Differentiation Syndrome"

- Chemotherapy if WBC ↑
- Dexamethasone if symptoms

Consider prophylactic if WBC > 10

Pseudotumor Cerebri (venous thromboses)

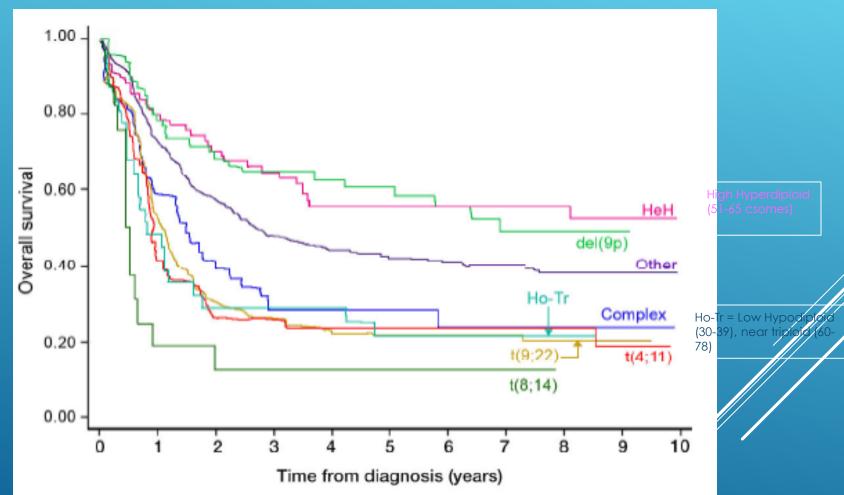
Dry Skin, Mucus Membranes

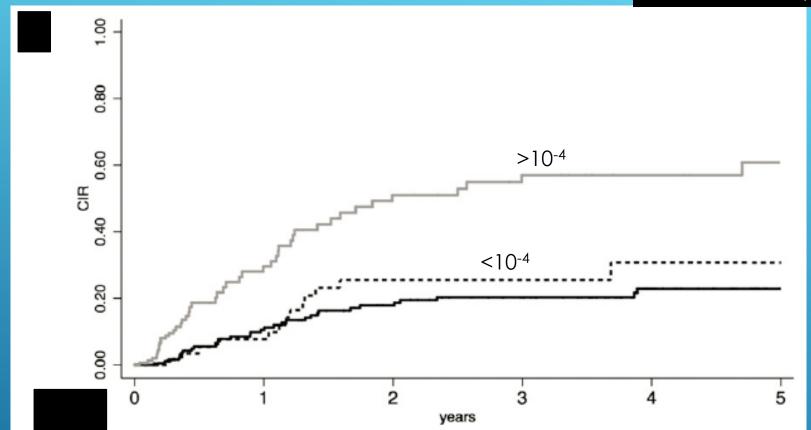
Hearing Loss

ACUTE LYMPHOBLASTIC LEUKEMIA/LYMPHOMA (ALL)

- Peak age at diagnosis 7yo
 - (23% of all pediatric cancer diagnoses)
- ▶ But diagnosis possible throughout life
- No major risk factors
 - rare secondary ALL (such as from CML)
- Must administer intrathecal chemotherapy
 - ▶ Without this 50% have CNS relapse
 - ▶ With IT chemo ~5% CNS relapse
- Can also involve testicles important to evaluate with testicular u/s as other 'sanctuary site'

PRESENTATION OF ALL


- Cytopenias from bone marrow involvement
 - Bleeding, fevers, weight loss, bone pain
- Circulating blasts
- Mediastinal mass (especially T-ALL, 25% of adult ALL)
- May have adenopathy, hepatosplenomegaly


BACK TO PHILLY

- ALL can also have the Philadelphia
 Chromosome t(9;22)
 - Respond toImatininb/Dasatinib/Nilotininb/Ponatinib
 - So always use these in Ph+ ALL

SURVIVAL BY CYTOGENETIC SUBGROUP: MRC UKALL XII/ECOG 2993

MEASURABLE RESIDUAL DISEASE (MRD) AND RISK OF RELAPSE

PRESENCE OF MINIMAL RESIDUAL DISEASE (MRD) IS THE BEST CURRENT PROGNOSTIC FEATURE, GUIDING SCT VS NO SCT

QUESTIONS AND THANKS

Matthew.ulrickson@bannerhealth.com

@MattUlricksonMD

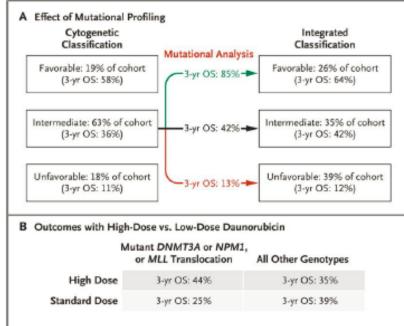
APL: Sanz Prognostic Factors

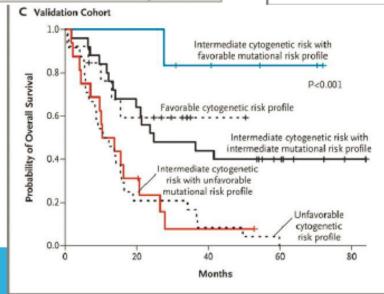
Low

WBC <10, Plt >40

Int

WBC <10, Plt <40


High


WBC ≥10

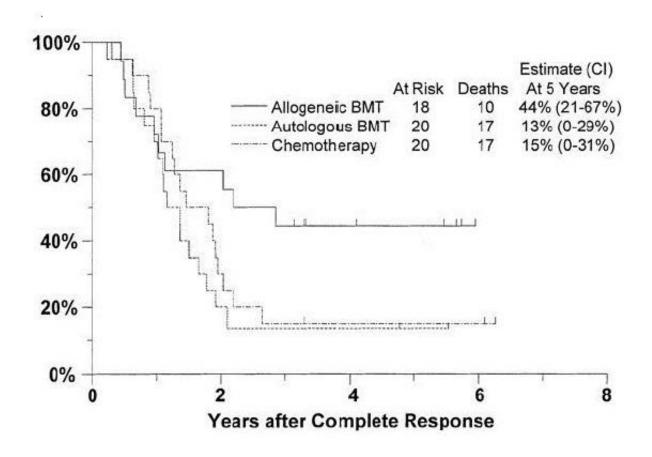
A Revised Risk Stratification

Cytogenetic Classification	Mutations		Overall Risk Profile	
Favorable				
Normal karyo- type or inter- mediate-risk ctyogenetic lesions	FLT3-ITD-negative	Mutant NPM1 and IDH1 or IDH2	Favorable	
	FLT3-ITD-negative	Wild-type ASXL1, MLL-PTD, PHF6, and TET2	Intermediate	
	FLT3-ITD- negative or positive	Mutant CEBPA		
	FLT3-ITD-positive	Wild-type MLL-PTD, TET2, and DNMT3A and trisomy 8-negative		
	FLT3-ITD-negative	Mutant TET2, MLL-PTD, ASXL1, or PHF6		
	FLT3-ITD-positive	Mutant TET2, MLL-PTD, DNMT3A, or trisomy 8, without mutant CEBPA	Unfavorable	
Unfavorable	Any			

MOLECULAR MARKERS AND PROGNOSIS IN AML

<u>Marker</u>	Effect	
NPM1 (33%)	fav	
CEBPA (8%)	fav	
Ras	fav (HDAC)	
BRE	fav (MLL)	

<u>Marker</u>	Effect
MLL ur	nfav t(9;11)
FLT3 ITD (Not TKD) (25%) unfav
EVI1	unfav
IDH1/2 (33%)	unfav
MN1	unfav
WT1 (10%)	unfav
FL1	unfav
BAALC	unfav
CKIT	unfav (i16)
DNMT3A (18%)	unfav
ERG	unfav


TET2

unfav/fav

Thol et al. J Clin Oncol 2011;29:2889-2896 Metzeler K H et al. J Clin Oncol 2011;29:1373-1381 Neubauer et al. J Clin Oncol 2008;26:4603-4609 Becker et al. J Clin Oncol 2009;28:596-604 Shen et al. J Clin Oncol 2011;118:5593-5603 Green et al. J Clin Oncol 2010:28:2739-2747

Therapy of High Risk AML

Slovak et al. Blood 2000;96:4080

Integration of Cytogenetic & Molecular Data in Younger Pts

EFS > 75%

t (15;17)

Inv 16 , +22 Kit -

EFS 50-75%

Other inv 16, Kit -

T(8;21) with low WBC, Kit -

Normal karyotype, CEBPA +

Normal karyotype, FLT3-/NPM +

EFS 25-50%

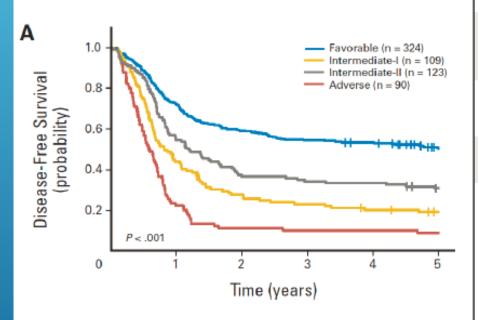
Inv 16, Kit +

T(8;21) with high WBC or Kit +

Normal karyotype FLT3-/NPM-

Normal karyotype FLT3+/NPM+

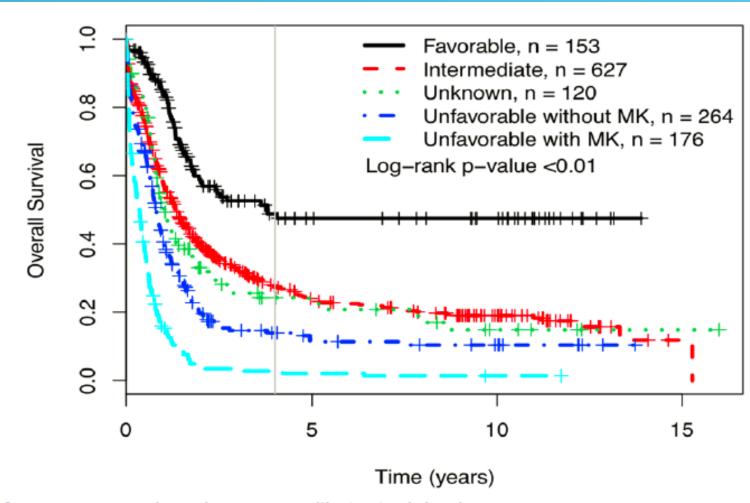
or –


Normal karyotype MLL1 PTD+

EFS < 20%

 Others except -5/-7 as sole abnormality w/o AHD

Prognosis: European Leukemia Net


Table 1. European LeukemiaNet Standardized Reporting System for Correlation of Cytogenetic and Molecular Genetic Data in AML With Clinical Data¹²

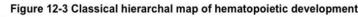
Genetic Group	Subsets
Favorable	t(8;21)(q22;q22); RUNX1-RUNX1T1 inv(16)(p13.1q22) or t(16;16)(p13.1;q22); CBFB-MYH11 Mutated NPM1 without FLT3-ITD (normal karyotype) Mutated CEBPA (normal karyotype)
Intermediate-I	Mutated NPM1 and FLT3-ITD (normal karyotype) Wild-type NPM1 and FLT3-ITD (normal karyotype) Wild-type NPM1 without FLT3-ITD (normal karyotype)
Intermediate-II	t(9;11)(p22;q23); MLLT3-MLL Cytogenetic abnormalities not classified as favorable or adverse
Adverse	inv(3)(q21q26.2) or t(3;3)(q21;q26.2); RPN1-EVI1 t(6;9)(p23;q34); DEK-NUP214 t(v;11)(v;q23); MLL rearranged -5 or del(5q) -7 abnl(17p) Complex karyotype*

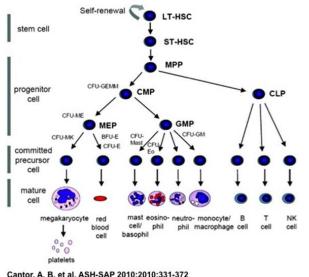
Abbreviations: AML, acute myeloid leukemia; ITD, internal tandem duplication. *Complex karyotype is defined as three or more chromosome abnormalities in the absence of one of the WHO designated recurring translocations or inversions: t(8;21), inv(16) or t(16;16), t(15;17), t(9;11), t(v;11)(v;q23), t(6;9), inv(3) or t(3;3).

CYTOGENETICS AND SURVIVAL IN AML

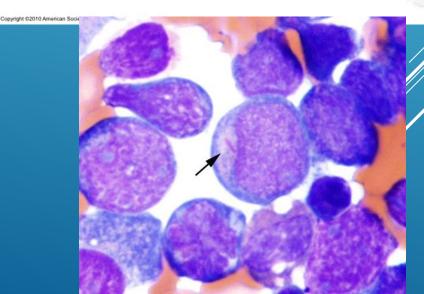
MK=2 or more monosomies or 1 monosomy with structural abnml

WHAT TO DO WITH THE REST?


- Cytogenetic changes without clear prognostic information
- Standard-risk patients that respond in nonstandard manner
- Risk stratification in UK ALL XII (adverse features)
 - > Ph+
 - >35yo
 - WBC >30k B cell or >100k for T cell
 - More than 4 weeks for cytologic CR (MRD)
- Presence of Minimal Residual Disease (MRD) is the best current prognostic feature, guiding SCT vs no SCT


DIFFERENTIATE AML VS ALL

- Rarely, can see Auer Rods
 - Only in myeloid blasts


- Flow cytometry
- ➤ Cytogenetics -t(8;21), inv16, → AML $t(9:22) \rightarrow ALL$ $t(15;17) \rightarrow APL$

Cantor, A. B. et al. ASH-SAP 2010;2010:331-372

AML VS ALL WITH FLOW CYTOMETRY (OR IHC)

Myeloid	B-cell (lymphoid)	T-cell (lymphoid)
CD13	CD10	CD2
CD33	CD19	CD3
МРО	CD20	CD4
	CD22	CD5
	Surface Ig	CD7
		CD8

CD34 marks these cells as immature blasts (rare exceptions of CD34-negative blasts) The same marker as for HPC

AML IN THE ELDERLY

- Increased resistance to chemotherapy (MDR1 expression)
- More likely to have unfavorable cytogenetics
- More likely secondary to MDS
- More comorbidities

OUR PATIENT

- Enters a complete remission
- Completes 3 additional cycles of consolidation
- Currently remains in remission, back at work, with regular follow up
- But what if the disease comes back?

WHEN IS ENOUGH?

- Estey Blood 1996
 - 4206 pts, median age 56yo
 - Received chemotherapy for relapsed/refractory AML and did not go to transplant (1991-1994)

First Salvage (n = 206)	68% Conventional 32% investigational (topotecan, 2Cda, taxol)	CR rate 23%
Second Salvage (n = 93)	43% conventional 57% investigational	CR rate 11%
Third Salvage (n=40)		CR rate 10%
Fourth salvage (n=17)		CR rate 6%

DURATION OF CR1 AND LIKELIHOOD OF RESPONSE

Treatment	Likelihood of CR
CR1 >2yrs, 1st salvage n=15	73% (45-92%)
CR1 1-2yrs, 1st salvage n=30	47% (28-66%)
CR1 <1yr or no CR, 1st salvage n=160	14% (8-21%)
CR1 <1yr or no CR1 2nd - 4th salvage n= 58 (96 tx)	0% (0-4%)

