ACUTELY DECOMPENSATED HEART FAILURE AN OVERVIEW OF THE TRANSITION

Radha Gopalan, MD, FACC

Associate Professor of Medicine

Director, Advanced Heart Failure

Banner University Medical Center - Phoenix

DISCLOSURES

None

OBJECTIVES

- Explore clinical presentation of acute decompensation.
- Explore hemodynamic subsets of acutely decompensated heart failure (ADHF).
- Explore approaches to the management of ADHF.
- Determine guideline based management aimed at each stages explored.
- Explore characteristics that determine transition to advanced heart failure.

PARADIGM SHIFTS IN HEART FAILURE

Period	Clinical Endpoint	Pathophysiology	Therapy
Pre-1970	Edema	Na+ retention	Diuretics
1970-1985	Symptoms	Hemodynamics	Inotropes Vasodilators Diuretics
1985-1995	Survival	Neurohormonal activation	ACE inhibitors/ARBs β-Blockers Spironolactone NO donors
Since 1995	Cellular Mechanics	Apoptosis	Antioxidants* Cytokine antagonists* NO-regulators*
Since 2001	Symptoms and Survival	Replacement	Assist devices or TAH

PATIENT #1: IS HE DECOMPENSATED?

- 44M with acute decompensated HF
- NIDCM (EF 19%), ICD 2006
- NYHA Class III at baseline
 - VO2 max 19.6 mL/kg/min
- 3 hospitalizations in 3 months
- Off medications x 2 weeks
- Discharged from outside hospital (2 days)
 - Minimal relief from IV diuresis
 - Cr 1.7, BNP 1143
- Exertional chest pain, SOB at rest, dry heaves, presyncope, palpitations
- 50 pounds above dry weight

- BP: 130/85, HR: 90
- Comfortable at rest only
- S1S2, + RV heave, 3/6 SEM, no S3, S4
- Lungs clear
- Nonpitting edema to thighs bilaterally
- Hgb 13
- Cr 1.3
- BUN 28
- LFTs normal
- BNP 1160
- Troponins negativeLVEF 25%, hypokinesis
- Mild MR, annular dilatation
- Mildly dilated IVC, normal inspiratory collapse
- CVP not that high but marked increased in filling pressures

PATIENT #2 IS HE DECOMPENSATED?

- 54 year old man referred with 4 years of HF from DCM. NYHA III-IV, 3 ADHF admissions in 9 months
- Echo EF 15%, EDD 7.4, Mod MR, Mod TR, Mod RV dysfunction
- Cr 1.6, BUN 47, Na 136
- 6MWD = 220 m

Comfortable

BP 95/75, HR 94, JVD 12, clear lungs, +S3, +S4, P2, Palpable liver, Cool ext. 2+ edema

Meds:

Carvedilol, Lisinopril, Aldactone, Digoxin, Lasix

FORRESTER CLASSIFICATION

Class	Description	CI	PCWP	Mort (%)
Ι	No congestion/peripheral hypo-perfusion	2.7	12	2
II	Isolated congestion	2.3	23	10
III	Isolated peripheral hypoperfusion	1.9	12	22
IV	Both congestion and peripheral hypo-perfusion	1.7	27	55

Before starting treatment Determine Hemodynamic Subset

Congestion at Rest (Orthopnea, JVD, ascites, edema, S3)

Before starting treatment **Determine Hemodynamic Subset**

Congestion at Rest (Orthopnea, JVD, ascites, edema, S3)

No Yes Low FC I-2% FC II-10% Warm and Dry Warm and Wet **Natriuretic** Perfusion No. PCW normal PCW elevated **Peptides** CI normal CI normal at Rest (compensated) or **Cold Ext** FC IV-55% Cold and Wet FC III-22% Cold and Dry Yes PCW low/normal **PCW** elevated CI decreased CI decreased **Hypotension** Normal SVR High SVR **Inotropic Drugs**

Dobutamine

Milrinone

Vasodilators Nitroprusside Nitroglycerin

ADHERE® CART: PREDICTORS OF IN-HOSPITAL MORTALITY

Reference:

Fonarow GC, et al. Risk stratification for in-hospital mortality in heart failure using classification and regression tree (CART) methodology. *JAMA*. 2005;293:572-580.

PATIENT #1: WHAT HEMODYNAMIC QUADRANT IS HE IN?

- 44M with acute decompensated HF
- NIDCM (EF 19%), ICD 2006
- NYHA Class III at baseline
 - VO2 max 19.6 mL/kg/min
- 3 hospitalizations in 3 months
- Off medications x 2 weeks
- Discharged from outside hospital (2 days)
 - Minimal relief from IV diuresis
 - Cr 1.7, BNP 1143
- Exertional chest pain, SOB at rest, dry heaves, presyncope, palpitations
- 50 pounds above dry weight

- BP: 130/85, HR: 90
- Comfortable at rest only
- S1S2, + RV heave, 3/6 SEM, no S3, S4
- Lungs clear
- Nonpitting edema to thighs bilaterally
- Hgb 13
- BUN 28
- Cr 1.3
- LFTs normal
- BNP 1160
- Troponins negativeLVEF 25%, hypokinesis
- Mild MR, annular dilatation
- Mildly dilated IVC, normal inspiratory collapse
- CVP not that high but marked increased in filling pressures

Before starting treatment **Determine Hemodynamic Subset**

Congestion at Rest (Orthopnea, JVD, ascites, edema, S3)

No Yes Low FC I-2% FC II-10% Warm and Dry Warm and Wet **Natriuretic** Perfusion No. PCW normal PCW elevated **Peptides** CI normal CI normal at Rest (compensated) or **Cold Ext** FC IV-55% Cold and Wet FC III-22% Cold and Dry Yes PCW low/normal **PCW** elevated CI decreased CI decreased **Hypotension** Normal SVR High SVR **Inotropic Drugs**

Dobutamine

Milrinone

Vasodilators Nitroprusside Nitroglycerin

PATIENT #1: HEMODYNAMICS

- BP: 134/92 mmHg (mean 104), HR: 85
- RAP: 24 mmHg
- RVP: 64/20 mmHg
- PAP: 63/43 mmHg (mean 51)
- PAW: 40 mmHg
- PA sat: 35%
- SVR: 2782 dynes-sec-cm5
- PVR: 4.9 Wood units
- FCO 2.8 L/min, FCI 1.2 L/min/m2
- TDCO: 2.3 L/min, TDCI 1L/min/m2

PATIENT #1: HOSPITAL COURSE

- Initiated on IV Vasodilator and IV diuresis
 - SBP 105/68 (79)
 - PA 42/13 (24)
 - CO 6.6, CI 2.9
 - CVP 4
- Neurohumoral agents added as tolerated
- NYHA Class I within 2 days

LIMITATIONS OF POSITIVE INOTROPES FOR ACUTE CHF

- Increased mortality
 - Milrinone^{1,2}
 - Enoximone³
 - Imazodan⁴
 - Vesnarinone⁵
 - Dobutamine^{6,7}
 - Xamoterol⁸
 - Ibopamine⁹
- Increased risk of hospitalization¹

- Aggravation and induction of arrhythmias (need telemetry)
 - Milrinone^{10,11}
 - Dobutamine¹²
 - Dopamine¹³
- Tachycardia¹⁴
- Tachyphylaxis
 (dobutamine)¹⁵
- Neurohormonal activation and/or lack of suppression¹⁶
- Physiologic effects antagonized by β-blockade (dobutamine, dopamine)

¹Packer M, et al. *New Engl J Med* 1991; 325: 1468-75.

²DiBianco R, et al. New Engl J Med 1989; 320: 677-83.

³Uretsky BF, et al. *Circulation* 1990; 82: 774-80.

⁴Goldberg AD, et al. Circulation 1990; 82: Suppl III: III-673.

⁵Cohn JN, et al. New Engl J Med 1998; 339: 1810-16.

⁶Dies F, et al. Circulation 1986;74: Suppl II: II-38.

⁷O' Connor CM, et al. Am Heart J 1999; 138: 78-86.

⁸The Xamoterol in Severe Heart Failure Group. *Lancet* 1990; 336: 1-6.

⁹Hampton JR, et al. *Lancet* 1997; 349: 971-7.

¹⁰Kleiman NS, et al. *J Am Coll Cardiol* 2000; 36; 310-25

¹¹Thackray S, et al. Eur J Heart Fail 2000; 2: 209-212

¹²Burger AJ, et al. Am J Cardiol 2001 Jul 1;88(1):35-9

¹³Chiolero, et al, Cardiovasc Surgeon 1991; 39: 81-84

¹⁴ Colucci WS. *J Card Fail* 2001;7(1):92-100.

¹⁵ B. Hoffman and R. Lefkowitz. Chapter 10, The Pharmacologic Basis of Therapeutics, Goodman and Gilman, Eds, 9th. Edition (CD-ROM) 1996.

¹⁶Aronson D, et al. J Card Fail 2001; 7 (No. 3 Suppl 2): 28.

Recommendations for Inotropic Support, MCS, and Cardiac Transplantation.

Recommendations	COR	LOE	References
Inotropic support			
Cardiogenic shock pending definitive therapy or resolution	I	С	N/A
BTT or MCS in stage D refractory to GDMT	lla	В	647, 648
Short-term support for threatened end-organ dysfunction in hospitalized patients with stage D and severe HF/EF	IIb	В	592, 649, 650
Long-term support with continuous infusion palliative therapy in select stage D HF	Ilb	В	651-653
Routine intravenous use, either continuous or intermittent, is potentially harmful in stage D HF	III: Harm	В	416, 654–659
Short-term intravenous use in hospitalized patients without evidence of shock or threatened end-organ performance is potentially harmful	III: Harm	В	592, 649, 650
MCS			
MCS is beneficial in carefully selected* patients with stage D HF in whom definitive management (eg, cardiac transplantation) is anticipated or planned	lla	В	660–667
Nondurable MCS is reasonable as a "bridge to recovery" or "bridge to decision" for carefully selected* patients with HF and acute profound disease	lla	В	668–671
Durable MCS is reasonable to prolong survival for carefully selected* patients with stage D HFrEF	lla	В	672–675
Cardiac transplantation			
Evaluation for cardiac transplantation is indicated for carefully selected patients with stage D HF despite GDMT, device, and surgical management	Í	С	680

*Although optimal patient selection for MCS remains an active area of investigation, general indications for referral for MCS therapy include patients with LVEF <25% and NYHA class III–IV functional status despite GDMT, including, when indicated, CRT, with either high predicted 1- to 2-year mortality (eg, as suggested by markedly reduced peak oxygen consumption and clinical prognostic scores) or dependence on continuous parenteral inotropic support. Patient selection requires a multidisciplinary team of experienced advanced HF and transplantation cardiologists, cardiothoracic surgeons, nurses and ideally, social workers and palliative care clinicians.

BTT indicates bridge to transplant; COR, Class of Recommendation; CRT, cardiac resynchronization therapy; GDMT, guideline-directed medical therapy; HF, heart failure; HF, reart failure with reduced ejection fraction; LOE, Level of Evidence; LVEF, left ventricular ejection fraction; MCS, mechanical circulatory support; N/A, not applicable; and NYHA, New York Heart Association.

Yancy C W et al. Circulation. 2013;128:e240-e327

DETERMINANTS OF VENTRICULAR FUNCTION

Goals for Treatment of Acutely Decompensated Heart Failure

Hemodynamic

SBP \geq 80 mm Hg

PCWP < 15 mm Hg

RAP < 8 mm Hg

SVR < 1200 dyne-s-cm⁻⁵

Clinical

SBP > 80 mm Hg

No orthopnea

No peripheral edema

No hepatomegaly/ascites

JVP < 8 cm

Warm extremities

Pathophysiologic

Achieving neurohormonal attenuation and balance

Functional Class Improvement

PROGRESSION OF CHRONIC HEART FAILURE RELATED TO DECOMPENSATION (SYMPTOMS)

NATURAL HISTORY OF HF

EVERY DECOMPENSATION TRANSITIONS PATIENT TO ADVANCED HEART FAILURE

FIVE-YEAR SURVIVAL CANCER VERSUS HF

2002 Heart and Stroke statistical update and 2002 Cancer Facts and Figures, American Cancer Society

ESC CRITERIA FOR ADVANCED HEART FAILURE

- NYHA Class III-IV Symptoms
- Episodes of volume overload and/or peripheral hypoperfusion
- Objective evidence of severe cardiac dysfunction (EF<30%, Doppler Pseudonormal or Restrictive filling pattern, PCWP>16mmHg or RAP >12 mmHg)
- Severely impaired functional capacity (Inability to exercise, 6MWD<300m, Peak VO2<12-14 ml/kg/min)
- *HF Hospitalizations* (≥1 in past 6 months)
- Above occurring despite attempts to optimize diuretics, RAAS antagonists, BB, CRT or in the setting of intolerance to OMT

PATIENT #1: DOES HE HAVE ADVANCED HEART FAILURE?

- 44M with acute decompensated HF
- NIDCM (EF 19%), ICD 2006
- NYHA Class III at baseline
 - VO2 max 19.6 mL/kg/min
- 3 hospitalizations in 3 months
- Off medications x 2 weeks
- Discharged from outside hospital (2 days)
 - Minimal relief from IV diuresis
 - Cr 1.7, BNP 1143
- Exertional chest pain, SOB at rest, dry heaves, presyncope, palpitations
- 50 pounds above dry weight

- BP: 130/85, HR: 90
- Comfortable at rest only
- S1S2, + RV heave, 3/6 SEM, no S3, S4
- Lungs clear
- Nonpitting edema to thighs bilaterally
- Hgb 13
- Cr 1.3
- BUN_28
- LFTs normal
- BNP 1160
- Troponins negativeLVEF 25%, hypokinesis
- Mild MR, annular dilatation
- Mildly dilated IVC, normal inspiratory collapse
- CVP not that high but marked increased in filling pressures

PATIENT #2: DOES HE HAVE ADVANCED HEART FAILURE?

- 54 year old man referred with 4 years of HF from DCM. NYHA III-IV, 3 ADHF admissions in 9 months
- Echo EF 15%, EDD 7.4, Mod MR, Mod TR, Mod RV dysfunction
- Cr 1.6, BUN 47, Na 136
- 6MWD = 220 m

Comfortable

BP 95/75, HR 94, JVD 12, clear lungs, +S3, +S4, P2, Palpable liver, Cool ext. 2+ edema

Meds:

Carvedilol, Lisinopril, Aldactone, Digoxin, Lasix

CLOSING REMARK ACUTE DECOMPENSATION OF HEART FAILURE IS AFTERLOAD MISMATCH

- Primary pathophysiology: elevation of LV filling pressure and fluid redistribution to the lungs¹ as a result of afterload mismatch (excess vasoconstriction) rather than decrease in contractility²
- The interaction between a rise in SVR and myocardial systolic and diastolic reserve is the major mechanism for elevated filling pressures and decompensation¹
- Reduction of LV filling pressure (via balanced vasodilation +/diuresis) results in rapid relief in symptoms and is associated with reduced risk of rehospitalization and improved survival³

- 1. Fonarow GC. Rev Cardiovasc Med. 2002;3(suppl 4):S19-S29.
- 2. Shah M et al. Rev Cardiovasc Med. 2001;2(suppl 2):S2–S6.
- 3. Aghababian RV. Rev Cardiovasc Med. 2002;3(suppl 4):S3-S9.

THANK YOU!