"If I have seen farther it is by standing on the shoulders of giants" - <u>Isaac Newton</u>

Pleural Effusions Manny Mathew, MD FCCP Clinical Associate Professor Univ Of Az

Objectives

- Pleural Anatomy and PathophysiologyFluid Analysis Exudative vs Transudative
 - Lights
 - Heffner
- Causes of Exudative vs Transudative
- Thoracocentesis and Fluid Analysis
- Parapneumonic Effusions
- Special Cases

Parietal Hydrostatic > Oncotic

Visceral Oncotic > Hydrostatic

Physiology Increased Pleural Fluid

- 1. Incr Capillary Hydrostatic Pressure (CHF)
- 2. increased negative pleural space pressure (Atelectasis)
- 3. Decr Plasma Oncotic Pressure (Hypoproteinemia, Nephrotic)
- 4. Obstruction of lymphatic drainage (Cancer)
- 5. Increased Pleural Permeability (Inflammation, Infection, Malig)
- 6. Anatomic Defects (hepatic hydrothorax)

Think of Pleural Membrane like a filter

Disorders b/w H & O press – Water Transudative Effusion

 Disorders within the Pleura - Larger Molecules Pass through

Exudative Effusions

Objectives

- Pleural Anatomy and Pathophysiology
- Exudative vs Transudative
 - Lights
 - Heffner
- Causes of Exudative vs Transudative
- Thoracocentesis and Fluid Analysis
- Parapneumonic Effusions
- Special Cases

Lights Criteria

 Discovered between 1968-1971 while he was an Intern at Johns Hopkins

Published in 1972

Light RW, MacGregor MI, Luchsinger PC, Ball WC Jr: "Pleural effusions: the diagnostic separation of transudates and exudates". Ann Intern Med 1972; 77:507-14.

Lights Criteria

- Pleural Fluid Prot/Serum Protein
 > 0.5 = EXUDATIVE
- Pleural LDH/Serum LDH> 0.6 = EXUDATIVE
- Pleural LDH > 2/3rds upper limit of Normal

*ONLY NEED 1 OF ABOVE TO BE EXUDATIVE

Dr John Heffner

Assoc Chief of Medicine Univ Of Az 1990-1998

 Exudative Effusion evaluation without serum labs

Heffner JE, Brown LK, Barbieri CA. Diagnostic value of tests that discriminate between exudative and transudative pleural effusions. Primary Study Investigators. Chest 1997; 111:970.

Heffner Criteria

Heffner JE, Brown LK, Barbieri CA. Diagnostic value of tests that discriminate between exudative and transudative pleural effusions. Primary Study Investigators. Chest 1997; 111:970.

Three-test rule

- Pleural fluid protein greater than 2.9 g/dL (29 g/L)
 Pleural fluid cholesterol greater than cholesterol 45 mg/dL (1.165 mmol/L)
- Pleural fluid LDH greater than 0.45 times the upper limit of the laboratory's normal serum LDH

Two-test rule

- Pleural fluid cholesterol greater than 45 mg/dL
- Pleural fluid LDH greater than 0.45 times the upper limit of the laboratory's normal serum LDH

Heffner Criteria

 More specific for Transudative effusion

 99% specific if all 3 criteria negative and not on diuretic More specific for exudative effusion

99% specific for
 Exudative with "2 Test
 Rule"

Roth Criteria

Chest . 1990 Sep;98(3):546-9. doi: 10.1378/chest.98.3.546.

The serum-effusion albumin gradient in the evaluation of pleural effusions

Useful in distinguishing an exudative vs pseudoexudate effusion CHF + Diuretics

With Diuresis water is drawn out faster than protein and in CHF relief of hepatic congestion decreases serum LDH

Roth Criteria

Serum albumin – Pleural Albumin
 > 1.2 = Transudative
 < 1.2 = Exudative

****** Do this in addition to Lights or Heffner Criteria ******

Objectives

- Pleural Anatomy and Pathophysiology
- Exudative vs Transudative
 - Lights
 - Heffner
- Causes of Exudative vs Transudative
- Thoracocentesis and Fluid Analysis
- Parapneumonic Effusions
- Special Case

68 y/o F with PMH of CAD presents with SOB, and Leg swelling

CXR is shown

All of the following are true except

- A. this is the most common cause of pleural effusion
 - B. Effusions can be transudative or exudative
- C. PAWP is often normal
- D. Effusions are often Bilateral
- E. 'House of Payne' went from being a 90s Hip Hop Group a to a Stroke Unit at BUMC

Causes of Pleural Effusions

Transudative

CHF
 Cirrhosis

3. PE

Exudative 1. PNA 2. Malignancy 3. PE

CHF EFFUSION

- Most Common cause of transudative effusion
 - Bilat > R > Left
 - Tx the CHF not the effusion
- Does not require pleural fluid analysis for diagnosis (clinical diagnosis)
- If you Tap.....

CHF effusion Studies

Serum Total Protein – Pleural Total Protein >
 3.1g = Transudative

 Serum Albumin – Pleural Albumin > 1.2 = transudative

Pleural N-Terminal BNP > 1500 = 93% specific for CHF

Case

 54 y/o M presents CC of Fever, SOB, Cough (brown sputum) and CP x 3 days

O/E: T 101.5, 02 Sat 90% RA
 Dullness to percussion over Left posterior chest
 Decreased breath sounds over left lower chest

CXR: shown

Case

What is the next best study?

- 1. Chest CT
- 2. USS eval and Thoracocentesis
- 3. Bronchoscopy
- 4. Lateral decub CXR

- Lat decub usefull to distinguish
 mass vs atelectasis – vs – effusion
- If > 10mm layering height of effusion – safe to tap

 Perform Bilat Decub if you suspect malignancy under effusion You have just completed a US guided Thoracocentesis. You removed 1100cc of Cloudy Yellow fluid, There was no aspiration of free air. The patient did cough during the procedure. Post procedure US showed presence of lung sliding. Your follow up should include?

- A. CXR (insp hold)
- B. No Imaging Needed
- C. CT Chest
- D. CXR (exp hold)

Lung Sliding = 100% NPV for PTX

Risks for PTX (2-5%)

Table 3—Procedure-Related Factors Potentially Contributing to Pneumothorax Following Thoracentesis

	No. of	No. of
	Procedures Pneumothoraces (%	
Predictor Variables	n = 255	n = 14
Physician		
Fellow	194	10(5.1)
Attending	61	4(6.6)
Needle type		
Needle/angiocatheter	100	5(5.0)
Boutin	84	4(4.8)
Cope	71	5(7.0)
Fluid removed		
No fluid (dry tap)	15	1(6.7)
Fluid removed	240	13(5.4)
Amount of fluid removed, mL		
<60	59	3 (5.0)
60 to 350	60	2(3.3)
350 to 1,000	60	5(8.3)
>1,000	61	3 (4.9)
First or subsequent thoracentesis		
Initial	215	9(4.2)
Subsequent (≥ 2)	40	5 (12.5)*
Type of procedure		
Diagnostic	150	7(4.7)
Therapeutic	28	2(7.1)
Both diagnostic and therapeutic	77	5(6.5)

*Statistically significant difference at p < 0.05.

 ≥ 2 attempts

Larger Needle size (20g)?

Larger Volume ?

Evaluation of Patient-Related and Procedure-Related Factors Contributing to Pneumothorax Following Thoracentesis*

Henri G. Colt, MD, FCCP; Nancy Brewer, RVT; and Edward Barbur, MPH

Objectives

- Pleural Anatomy and Pathophysiology
- Exudative vs Transudative
 - Lights
 - Heffner
 - Causes of Exudative vs Transudative
- Thoracocentesis and Fluid Analysis
- Parapneumonic Effusions
- Special Cases

Thoracocentesis

USS guided Thoracocentesis

US guided Thora is standard of care

Higher success rate, even after dry tap

58% of exam guided dry taps – b/c below the diaphragm

should be done in real time (or at least at time of marking)

US Guided Thoracocentesis

Pt seated upright 8th ICS, Medial to Post Axillary Line

in A In-plane dynamic thoracentesis on a phantom: A shows a dynamic approach with the effusion visualized

Thoracocentesis

- Pleural Pressure = -5
- Vacutainer Pressure = -1000
 high neg pressure will kink cath
 ? PTX
- Re-expansion Pulm Edemawhen Pleural Pressure -20

 Large volume thoracentesis and the risk of reexpansion pulmonary edema
 <u>CHEST</u>, <u>Oct</u>, 2005 by <u>David M. Berkowitz</u>
 Retrospective eval of 602 cases
 245 cases > 1L removed = 1 case RPE

Thoracocentesis

Use Your Eyes

Clear/yellow	Normal	Routine
Bloody	Infect, Malig, PE, Hemothorax	НСТ
Cloudy	Infect, Malig, Chylothorax	TG, Chol
Milky	Chylothorax, Pseudochylous	TG,Chol
Pus	Empyema	Cult

Fluid Studies

Pleural Fluid	Serum
Cell Count/Diff/Cult	
TP, Alb	TP, Alb
LDH	LDH
Gluc	
Ph	
Cholesterol	
Non-Routine Studies	
BNP	
HCT	HCT
TG	
Lipase, Amylase, Creat	

Pleural Fluid Studies

WBC count means very little, nonspecific

Differential Changes everything

- > 10% Eos ----- Eosinophilic Effusion PTX, PE, Asbestos, Malig, Drugs, Parasitic
- > 50% Lymph -- Lymphocyte predominant *Tb, Malig, Post Pericardiotomy (CABG)*
- > 5% Mesothelial cells, virtually rules out Tb

Pleural Studies

- Drained 1100cc
- Cloudy
- LDH 1560 / (serum 170)
- **TP** 5.6 / (serum 4.7)
- Ph 6.9
- WBC 3330 (90% segs)
- GS: Gram + cocci

What's the diagnosis?

Objectives

- Pleural Anatomy and Pathophysiology
- Exudative vs Transudative
 - Lights
 - Heffner
- Causes of Exudative vs Transudative
- Thoracocentesis and Fluid Analysis
- Parapneumonic Effusions
- Special Cases

Parapneumonic Effusion

Def: any effusion that is associated with bacterial PNA, lung abscess, bronchiectasis

Most common cause of an exudative effusion

40-55% of bacterial pneumonia cases develop parapneumonic effusions

Parapneumonic Effusion

■ 1. Uncomplicatedexudate, sterile

2. Complicated.....exudate, infected

3. Empyema.....frank pus

STAGES

1. Exudative (Acute = < 72hrs)

2. Fibropurulent (Transitional = 3-10d)

3. Organization (Chronic > 10d)

Fibropurulent \rightarrow Organization

Question

Which of the following is the best indicator of a complicated parapneumonic effusion?

A. LDH B. Glucose C. pH D. WBC

Heffner et al; Pleural fluid chemical analysis in parapneumonic effusions. A metaanalysis Am J Respir Crit Care Med 1995 152(2):823

Review of 7 studies showed ph is most accurate in discerning b/w uncomplicated and complicated PPE

Treatment

- Abx and Drainage are Crucial
- Drainage Needs to be Prompt
- Consult Pulm Early !!
 - Chest Tube + TPA + Dnase Can Improve Imaging, reduce hosp days and Surg referrals..... *N Engl J Med 2011;365:518-26*

Chest Tube Fibrinolytics

Ask IR to place Chest tube with 3 way stopcock

Ask pharmacy to make up mixture of *TPA 10mg and Dornase 5mg and 20cc of saline in syringe to instill*

Instill into chest tube and clamp of chest tube x
 1 hour then open to suction

Record output from tube

Empyema Neccessitans

ANE OF THE EXCATEST HEREES IN ANTERCASI HEREBY HEREB THE A RAULT.

HACKSAW RIDGE

Objectives

- Pleural Anatomy and Pathophysiology
- Exudative vs Transudative
 - Lights
 - Heffner
- Causes of Exudative vs Transudative
- Thoracocentesis and Fluid Analysis
- Parapneumonic Effusions
- Special Cases

Case

45 y/o M with ESLD presents with progressive abd distension and SOB x 2wks.

CXR is shown.

Case

All of the following are true except

A. Hepatic Hydrothorax is likely

B. Isolated L effusion excludes hepatic hydrothorax

- C. Cause of pleural effusion with pleural TP <1
- D. Chest Tube drainage is contraindicated
- E. Even Chinese people find Dr Wong hard to understand

Hepatic Hydrothorax

- Incid: 6%
- Usually have Ascites
- 70% R side
 15% L side
 15% Bilat

Transudative with low protein (often <1)</p>

MAA scan of Peritoneal and Pleural Cavity

Hepatic Hydrothorax

If Pleural fluid Segs > 500 + neg cult Segs > 250 + pos culture /

Spontaneous Bacterial Pleuritis

Do not need Peritonitis to have SBPL/SBE (40% cases have no SBP)
(25% cases with no clinical ascites)

Hepatic Hydrothorax

- Diuresis

- Intermittent Thoracocentesis = Okay early on

- Chest Tubes = Avoid = leads to vol, prot, Ig loss
- Pleurodesis = rarely effective
- Indwelling Catheters = Palliative

Special Cases

- Malignant Effusions
 - Can be Transudative (15%)
 - Can be Exudative
 - Highest yield on Pleural Fluid Cyto if Metastatic

Adeno CA

Pleural Biopsy indicated for Effusion of unknown Etiology

Take Home Points

- Most common Transudative effusion is CHF
- Most common Exudative effusion is PNA
- 3 Lights Criteria is 99% specific for Transudative effusion
- Heffner Criteria (LDH + Pleural Chol > 45) is 99% specific for exudative effusion
- **3** Most common causes of Exudative and Trans Effusion
- Be careful using Vacutainers for smaller effusions, Avoid > 2 attempts

Take Home Points

- USS guidance for Thoracocentesis.
- Post thora = If Lung Sliding present post thora = 100% NPV for no PTX
- Re-expansion Pulm Edema is not that common, control RATE rather then volume
- Parapneumonic effusions = if it layers ---- Tap it...CALL US
- Hepatic Hydrothorax, Leave them alone, Tap if symptomatic....don't place chest tube !!
- Pleural biopsy indicated for effusion of unknown etiology

You all