Acid-base basics

C. Singarajah, M.D, F.C.C.P <u>csingarajah@earthlink.net</u> 2020

Learning objectives

- Understand the four basic acid base disorders
- Understand mixed disorders
- Stepwise approach to acid base analysis

Lecture outline

- Simplified physiology of acid base
- Stepwise approach to acid base analysis
- Questions
 - From simple acid base to the ultimate triple acid base disorder
 - See pdf file "Acid Base Q&A"

Definitions

- AN "osis " means a process
 Eg Acidosis.
- Alkalaemia means pH > 7.44
- Acidaemia means pH < 7.36

Definitions

Respiratory means changes in PCO₂ values c.f. to expected/normal.

 Metabolic means changes in serum bicarbonate

Homeostasis

□ Various buffers in the body

\square HCO₃/CO₂ buffer system is clinically used.

Other buffers are hemoglobin, bone, proteins

Homeostasis

□ Body tries to keep the pH between 7.36-7.44

Body tries to keep ratio of HCO_3/CO_2 fixed.

Basic disorders

Metabolic acidosis

 \Box Decreased bicarbonate or tCO₂

Metabolic alkalosis

 \square Increased bicarbonate or tCO₂

Basic disorders

Respiratory acidosis
 Increased PCO₂

Respiratory alkalosis
 Decreased PCO₂

\square HCO₃/CO₂ ratio

 Changes in one parameter are compensated by same direction changes in the other:
 Increased HCO₃ leads to increased CO₂ etc

Compensation

Lungs compensate for metabolic processes.
 minutes to hours

Kidneys compensate for respiratory processes.
 hours to days

13

Compensation

Analysis of ABG

Obtain ABG, chem 7.

pH - alkalemic or acidaemic ?

□ Check P_aCO_2 ; has it changed in direction to explain pH change?

Analysis

If P_aCO₂ has changed in appropriate direction, does it account for the whole change?

□ $\Delta P_a CO_2$ 10 = ΔpH 0.08 acutely □ $\Delta P_a CO_2$ 10 = ΔpH 0.04 chronically

Analysis

If answer is No to either of the previous two questions...

Must be a metabolic acid base problem in addition

рН	PCO2	Interpretation
7.40	40	Normal

рН	PCO2	Interpretation
7.40	40	Normal
7.48	30	Respiratory alkalosis
7.56	20	Respiratory alkalosis
7.32	50	Respiratory acidosis
7.24	60	Respiratory acidosis
7.30	60	Respiratory acidosis + Metabolic alkalosis
7.48	20	Respiratory alkalosis + Metabolic acidosis

Analysis

Is serum bicarbonate high or low ?

If low, calculate the anion gap.
 Na - Chloride - bicarbonate = AG

Analysis of gap acidosis

If there is an anion gap, then check:

- □ M Methanol □ I Iron, infection
- □ U Uremia □ L High lactate
- D DKA DE Ethanol
- □ P Propylene glycol □ S Salicylate

Correction of AG for low albumin

• Low albumin hides a high anion gap

2.5 x (Normal albumin - measured albumin)

Measured AG

Corrected Anion gap

Analysis of delta gap

 If anion gap present analyze delta gap to look for second acidosis. In effect, correct the bicarbonate for the presence of the anion gap.

 $\square HCO_{3(c)} = HCO_{3(a)} + \{Actual AG - normal AG\}$

 \Box E.g. = 8 +{34 - 10} = 32

The delta gap.

Tries to back track in time to when the patient did not have an anion gap that was high.

Assumes that as AG increases, bicarbonate drops on a 1:1 ratio.

Analysis of delta gap.

If corrected bicarbonate is higher than normal : implies metabolic alkalosis.

If corrected bicarbonate is lower than normal : implies non gap metabolic acidosis.

Metabolic non gap acidosis

Analysis of respiratory compensation

Any metabolic acidosis (gap or non gap) use *Winter's* formulae to assess respiratory compensation.

 \square P_aCO_{2 (e)} = {HCO₃ x1.5} + 8 ±2

Bicarbonate tCO ₂	PCO2	Interpretation
24	40	Normal
10	21-25	Metabolic acidosis + appropriate respiratory compensation
10	30	Metabolic acidosis + Respiratory acidosis
10	15	Metabolic acidosis + Respiratory alkalosis

Analysis of respiratory compensation.

- If actual P_aCO₂ is higher than P_aCO_{2 (e)}, then there is a respiratory acidosis (even if <40).
- □ If actual $P_a CO_2$ is lower than $P_a CO_2_{(e)}$, then there is a respiratory alkalosis (even if > 40).

Analysis of non gap metabolic acidosis

Whenever there is a non gap metabolic acidosis, calculate the urinary anion gap.
 UAG = Na + K - Chloride.

Two types of non gap acidosis
 Renal and non renal

Analysis of non gap metabolic acidosis

If UAG is a positive value, implies renal source of non gap acidosis eg RTA.

If UAG is a negative value, implies non renal source such as diarrhoea

Analysis of metabolic alkalosis

Either adding bicarbonate and/or losing acid.
Check urine chloride
If low : implies chloride responsive
If high : implies chloride unresponsive

Mixed disorders

A normal pH may be normal

A normal pH may be abnormal if combined metabolic and alkalotic process.

Mixed disorders

No way to have a combined respiratory acidosis and respiratory alkalosis.

If bicarbonate and P_aCO₂ have changed in opposite directions : a mixed disorder exists

Mixed disorders

\Box Up to 3 at a time:

- Metabolic gap acidosis, metabolic alkalosis and respiratory alkalosis
- Metabolic gap acidosis, metabolic alkalosis and respiratory acidosis
- Metabolic gap acidosis, metabolic non gap acidosis and respiratory acidosis e
- □ And so on....

Which combination is not possible?

Some examples (without clinical context!) #1

pH 7. 32, PaC0₂ 80
 Acute respiratory acidosis
 Plus metabolic alkalosis

- □ pH 7. 10, PaCO₂ 60
- Acute respiratory acidosis
- Plus metabolic acidosis
- Two disorders as pH is lower than a respiratory process could explain

Bicarbonate 10
AG 30
Delta gap 20
Corrected bicarbonate 30
Metabolic gap acidosis
Plus metabolic alkalosis

Bicarbonate 5
AG 18
Delta gap 8
Corrected bicarbonate 13
Metabolic gap acidosis
Plus metabolic non gap acidosis

Bicarbonate 10
 PaC0₂ 25
 Appropriate respiratory compensation

Bicarbonate 10 \square PaCO₂ 40 Inappropriate respiratory compensation Under compensated Respiratory acidosis and metabolic acidosis - May need intubation!!!

□ Bicarbonate 10 \square PaCO₂ 40 Anion gap 40 Metabolic acidosis gap Metabolic alkalosis Respiratory acidosis A triple disorder

Metabolic gap acidosis
 Salicylate - dialysis
 Renal failure - renal Rx
 Lactic acidosis - resuscitate
 DKA - insulin, fluids, Rx trigger
 Methanol OD - dialysis

Metabolic non gap acidosis
Diarrhea - Rx the diarrhea
Renal tubular acidosis - Rx the cause
TPN - change to acetate salts of Na and K

Metabolic alkalosis
 NG suctioning - replace same fluid or stop suctioning
 Vomiting - replace with NS

Respiratory alkalosis
Head injury
Infection
Alcohol withdrawal
Anxiety
Pain

Respiratory acidosis
Over sedation
COPD
Neuromuscular disease

Osmolar Gap > 10 mOsm/kg Osmolar gap

Measured osmolarity - Calculated osmolarity Causes := Ethanol, methanol, ethylene glycol, mannitol, propylene glycol

Osmolar gap calculation

Calculated = 2 Na + glucose/18 + BUN/ 2.8 + Glucose/189 + Ethanol/4.6

- Sodium 140
- Potassium 4.0
- Chloride 100
- Bicarbonate 10

- BUN 28
- Glucose 180
- Measured osmolarity 350

What is the acid base interpretation?

Metabolic anion gap acidosis

What is the osmolar gap?

Osmolarity and US units

- •Osmolarity units osmoles per liter
- •US units mg/deciliter (1/10th of liter)
- •SI units moles/liter
- •In USA
 - Osmolarity = (concentration mg/dL X 10) / molecular weight
 - Ethanol is C_2H_5 OH = 46 molecular weight

Osmolar and US units.

http://www.scymed.com/en/smnxps/psmcf770.htm

- Going back to question, osmolar gap was 50
- Assuming this was all due to ethanol what is the equivalent ethanol concentration in mg/dL?
 - Osmolarity = (concentration mg/dL X 10) / molecular weight
 - Concentration mg/dL = Osmolarity X molecular weight / 10
 - 50 x 4.6 = 230 mg/dL of ethanol