## Sarcoidosis

#### Kenneth S. Knox, MD Professor of Medicine & Immunobiology Associate Dean, Faculty Affairs Pulmonary Division, UA CoM-Phoenix

# Housekeeping

- No disclosures
- One FDA approved medication for sarcoidosis
- Funding
  - NIH/NHLBI/NIA
    - Lung immune response to HIV and Pulmonary microbiome
    - Virome "burden" and Aging
  - ADHS
    - Lung on a Leaf, modeling and platform for drug discovery and granuloma modeling

**Objectives** 

-To understand sarcoid pathogenesis

To appreciate sarcoidosis as a complex systemic disease

 To recognize the difficulties associated with diagnosing sarcoidosis

-To determine when to treat sarcoidosis







63 yo Nonsmoker Cough Fatigue

# What is Sarcoidosis ?

- Systemic inflammatory/immunologic disorder
- Affects any organ, but lung in over 90% of patients, Liver almost as much
- Hallmark is granulomatous inflammation (noncaseating)
- It is diagnosis of exclusion
- Thought to be in response to inhaled trigger

## History- Sarcoid is a skin disease...

- First described by Hutchinson in 1878 and in 1898 as Mrs. "Mortimer's Malady" (she had "gout")
- Besnier described a patient in 1889 and termed skin findings "lupus pernio"
- Tenneson in 1892, second patient with lupus pernio, first report with histology
- Boeck in 1899 reported a patient with "Multiple Benign Sarkoid of Skin"
- In 1914 Schaumann first identified that Boeck's sarkoid and Besnier's pernio were same- termed it "lymphogranuloma benignum"







# History- Sarcoid is systemic...

- Mikulicz in 1892, salivary and lacrimal gland involvement
- Heerfordt in 1909 (uveoparotid fever) uveitis, salivary gland, and cranial nerve palsy
- Boeck in 1916 showed sarcoidosis to be a systemic disease with "benign miliarlupoids", also cutaneous anergy to crude tuberculin.
- Kreibich 1904 and Jungling 1921- bone

# History- Where's the lung?

- In 1932, Schaumann pioneered lung involvement as the first stage in the natural course of sarcoidosis
- In 1946 Lofgren first described the constellation of erythema nodosum, febrile arthropathy, and bilateral hilar adenopathy



 1952 Myers described migratory polyarthritis as presenting feature of sarcoidosis

## Sarcoid: An inflammatory disease

- Israel in 1954 pioneered the idea of sarcoidosis as an immunologic disease
- From about 1975 on, sarcoidosis recognized as a "hyperactive" disease of inflammation
- 1980 Hunninghake examined inflammatory T cells in bronchoalveolar lavage (BAL)
- 1984 Kataria describes cell-mediated granulomatous response to Kveim-Siltzbach "particulate" skin test.

# Who gets Sarcoidosis ?



# Immunogenetics Sarcoidosis = Genetic X Antigen X Immunologic

## **Genetics- SAGA, African American**

lannuzzi et al

- Sarcoidosis Genetic Analysis consortium performed genome wide sib-pair multipoint linkage analysis in 229 African American families
- Possible susceptibility gene on 5q11
- Associations with severity phenotypes, different loci

### **Genetics- German cohort**

Valentonyte et al

- SNP scan of 16.4 Mb on chromosome 6p21 in as many as 947 independent cases of familial and sporadic sarcoidosis and found that a 15-kb segment of the gene butyrophilin-like 2 (BTNL2) was associated with the disease
- BTNL2 is a member of the immunoglobulin superfamily and has been implicated as a costimulatory molecule involved in T-cell activation on the basis of homology to B7
- Less so when validated in SAGA, ACCESS- AA population

#### **Genetics-Scandanavia**

Wahlstrom et al- Scandanavian sarcoid study

- Characterized HLA DRB1\*0301 and cell expansion of CD4+ Va2.3T cells
- Eluted antigen and found 78 aa sequences from self proteins associated with BAL cells (ie: vimentin and ATP-synase) as possible "autoantigen"

Wahlstrom J et al. Identification of HLA-DR-bound peptides presented by human BAL cells in sarcoidosis. J Clin Invest. 2007 Nov 1;117(11):3576-3582.

## **Genetic Factors**

| Disease Risk<br>Phenotype | Allele            | Population     | OR   | СІ         | Р      |
|---------------------------|-------------------|----------------|------|------------|--------|
| Increased risk            | DRB1*03           | White UK/Dutch | 7.97 | 4.16-15.26 | <.0001 |
| of Lofgren                | DRB1*0301         | White Spanish  | 3.52 | 1.83-6.79  | .0004  |
| syndrome                  | DRB1*0301         | White Swedish  | 7.71 | 4.63-12.84 | <.0001 |
| -                         | DRB1*03           | White Swedish  | 6.71 | NR         | <.0001 |
|                           | DRB1*03-DQB1*0201 | White Dutch    | 12.5 | 5.69-27.52 | <.0001 |
|                           | DRB1*0301         | Finnish        | 2.46 | 1.11–5.45  | .044   |
|                           | DRB1*0301         | Portuguese     | 4.01 | 1.88-8.56  | <.01   |
|                           | DRB1*1501         | Finnish        | 2.16 | 1.06-4.41  | .037   |

Fingerlin TE. et al. Genetics of Sarcoidosis. Clinics in Chest Medicine. Dec 2015

Fingerlin TE. et al. Genetics of Sarcoidosis. Clinics in Chest Medicine. Dec 2015



# **BAL research lab**





CD4/CD8 ratio = 61.78/24.23 = 2.5 "normal"

#### Genomic Profiling Produces a Novel Signature and Genomic Biomarker in Sarcoidosis which Predicts Complications



\*\*Cardiac Sarcoid, Neuro Sarcoid, Progressive Lung Sarcoid Complicated analysis for complicated sarcoidosis ;)

T Zhou et al PlosOne 2012

#### **Familial Aggregation** of Sarcoidosis

#### A Case–Control Etiologic Study of Sarcoidosis (ACCESS)

BENJAMIN A. RYBICKI, MICHAEL C. IANNUZZI, MARGARET M. FREDERICK, BRUCE W. THOMPSON, MILTON D. ROSSMAN, EDDY A. BRESNITZ, MICHAEL L. TERRIN, DAVID R. MOLLER, JULIANA BARNARD, ROBERT P. BAUGHMAN, LOUIS DEPALO, GARY HUNNINGHAKE, CAROL JOHNS,<sup>†</sup> MARC A. JUDSON, GENELL L. KNATTERUD, GEOFFREY MCLENNAN, LEE S. NEWMAN, DAVID L. RABIN, CECILE ROSE, ALVIN S. TEIRSTEIN, STEVEN E. WEINBERGER, HENRY YEAGER, REUBEN CHERNIACK, and the ACCESS RESEARCH GROUP

#### Family history = Old school genetics

TABLE 1. SUMMARY OF SARCOIDOSIS FAMILIAL ASSOCIATIONS IN 706 ACCESS CASE-CONTROL PAIRS

|                                        | Cases  |                        | Controls |                        |                                         |         |
|----------------------------------------|--------|------------------------|----------|------------------------|-----------------------------------------|---------|
| Relative Type                          | N      | Number<br>Affected (%) | N        | Number<br>Affected (%) | Odds Ratio<br>(95% Confidence Interval) | p Value |
| Parents                                | 1,468  | 18 (1.2)               | 1,396    | 4 (0.3)                | 3.8 (1.2–11.3)                          | 0.019   |
| Sibs                                   | 2,722  | 28 (1.0)               | 2,587    | 6 (0.2)                | 5.8 (2.1–15.9)                          | 0.0007  |
| Children                               | 1,335  | 5 (0.4)                | 1,354    | 3 (0.2)                | 3.3 (0.3–32.2)                          | 0.298   |
| All first-degree relatives             | 5,525  | 51 (0.9)               | 5,337    | 13 (0.2)               | 3.8 (1.9–7.6)                           | 0.0001  |
| Grandparents                           | 2,936  | 67 (2.3)               | 2,792    | 12 (0.4)               | 5.2 (1.5–18.0)                          | 0.008   |
| Avuncular                              | 5,884  | 21 (0.4)               | 5,435    | 3 (0.1)                | 5.7 (1.6–20.7)                          | 0.008   |
| All second-degree relatives            | 8,820  | 88 (1.0)               | 8,227    | 15 (0.2)               | 5.2 (1.5–18.2)                          | 0.009   |
| All first- and second-degree relatives | 14,345 | 139 (1.0)              | 13,564   | 28 (0.2)               | <u>4.6 (</u> 2.2–9.6)                   | 0.0006  |
| Spouses                                | 702    | 5 (0.7)                | 700      | 7 (1.0)                | 0.2 ((.04–1.1)                          | 0.058   |

#### Am J Respir Crit Care Med Vol 164. pp 2085–2091, 2001



## Environment

- Beryllium- similar disease
- "Clustering" many reports, (ie: navy)
- Geographical ("farther from the equator")

   Seasonal "springtime dz"
   cases reported worldwide.

# Prevalence of Sarcoidosis across America per 100,000 population



Baughman RP. Ann Am Thorac Soc 2016



#### "The sarcoidoses"

CHEST / 13 1 / 5 / MAY, 2007

CHEST / 13 1 / 5 / MAY, 2007

#### Infections that mimic or potential etiology

Tuberculosis (ESAT-6 and mKat-G)

-PCR, T cell responses, eluting

- Propionibacteria (Ishigi, Lancet, 1999)
- Histoplasmosis (Indiana experience)
- Coccy (Arizona experience)

#### CLEAR TRIAL(s): Concomitant Levofloxacin, Ethambutol, Azithromycin, and Rifampin





Drake et al. JAMA Dermatol. 2013 Sep; 149(9): 1040–1049. Drake et al. Sarcoidosis Vasc Diffuse Lung Dis. 2013 Nov 25; 30(3): 201–211. **Infection Hypothesis** 

## Microbiome (GRADS study)

- Prevotella
- Veillonela
- Streptococcus
- Actinomyces
- Pasteurellaceae

All seen across the sarcoid cohort OW>BAL

# Sarcoid reactions

#### Associated with "Immune-modulating" therapy

#### IFN therapy for hepatitis

 Pietropaoli A et al. Interferon-alpha therapy associated with the development of sarcoidosis. Chest. 1999 Aug;116(2):569-72.

#### HIV reconstitution syndrome (IRIS)

- Foulon et al. Sarcoidosis in HIV-infected patients in the era of highly active antiretroviral therapy. Clin Infect Dis. 2004 Feb 1;38(3):418-25.
- Anti-TNF
- IL-2

# Summary

- Inflammatory disorder
- Many genes and cytokines involved
- Cause unknown, but infectious and autoantigens recently defined
- Role of clearance vs antigen persistence
- Cohort matters
- Further study based on clinical phenotype

Epidemiology and ACCESS

# Sarcoidosis- epidemiology Second most common lung disease in young adults (second only to asthma)

- Lifetime risk .85% for US whites
- Lifetime risk 2.4% for US blacks
- Blacks:Whites 3-7:1 in US

#### <mark>Clinical Characteristics</mark> of Patients in a Case Control Study of Sarcoidosis

ROBERT P. BAUGHMAN, ALVIN S. TEIRSTEIN, MARC A. JUDSON, MILTON D. ROSSMAN, HENRY YEAGER, JR., EDDY A. BRESNITZ, LOUIS DEPALO, GARY HUNNINGHAKE, MICHAEL C. IANNUZZI, CAROL J. JOHNS, GEOFFREY McLENNAN, DAVID R. MOLLER, LEE S. NEWMAN, DAVID L. RABIN, CECILE ROSE, BENJAMIN RYBICKI, STEVEN E. WEINBERGER, MICHAEL L. TERRIN, GENELL L. KNATTERUD, REUBEN CHERNIAK, and A CASE CONTROL ETIOLOGIC STUDY OF SARCOIDOSIS (ACCESS) RESEARCH GROUP

#### TABLE 2. DISTRIBUTION OF CASES BY SEX AND ETHNIC ORIGIN

|         | White | Black | Other | Percent |
|---------|-------|-------|-------|---------|
| Female  | 223   | 234   | 11    | 63.6    |
| Male    | 170   | 91    | 7     | 36.4    |
| Percent | 53.4  | 44.2  | 2.4   |         |

#### Am J Respir Crit Care Med Vol 164. pp 1885–1889, 2001

#### TABLE 2. DISTRIBUTION OF CASES BY SEX AND ETHNIC ORIGIN



Am J Respir Crit Care Med Vol 164. pp 1885–1889, 2001

#### A Case Control Etiologic Study of Sarcoidosis

**Environmental and Occupational Risk Factors** 

Lee S. Newman, Cecile S. Rose, Eddy A. Bresnitz, Milton D. Rossman, Juliana Barnard, Margaret Frederick, Michael L. Terrin, Steven E. Weinberger, David R. Moller, Geoffrey McLennan, Gary Hunninghake, Louis DePalo, Robert P. Baughman, Michael C. Iannuzzi, Marc A. Judson, Genell L. Knatterud, Bruce W. Thompson, Alvin S. Teirstein, Henry Yeager, Jr., Carol J. Johns<sup>†</sup>, David L. Rabin, Benjamin A. Rybicki, Reuben Cherniack, and the ACCESS Research Group\*

Am J Respir Crit Care Med Vol 170. pp 1324–1330, 2004

| <u>Variable</u>                       | <b>Odds Ratio</b> | <b>Confidence Inter</b> |
|---------------------------------------|-------------------|-------------------------|
| Positive Associations with Sarcoidosi | is                |                         |
| Exposure to musty odors, occupational | 1.62              | (1.24-2.11)             |
| Insecticide exposures, occupational   | 1.61              | (1.13-2.28)             |
| Use of air conditioning in home       | 1.48              | (1.10-1.99)             |
| Job as middle or high school teacher  | 1.80              | (1.14-2.83)             |
| Job with radiation exposure †         | 2.28              | (1.17-4.47)             |
| Job in automobile manufacturing       | 13.38             | (1.48-120.9             |
| Job in cotton ginning                 | 4.98              | (1.19-20.89)            |
| Job raising birds                     | 3.73              | (1.10-12.59)            |
| Bird exposure, avocational †          | 1.49              | (1.00-2.21)             |

#### Am J Respir Crit Care Med Vol 170. pp 1324–1330, 2004
| <u>Variable</u>                          | <u>Odds Ratio</u> | <b>Confidence Inter</b> |
|------------------------------------------|-------------------|-------------------------|
| Negative Associations with Sarcoidosis   |                   |                         |
| Ever smoked cigarettes                   | 0.65              | (0.51-0.82)             |
| Childcare, unpaid                        | 0.64              | (0.50-0.81)             |
| Use of feather/down pillows              | 0.69              | (0.54-0.87)             |
| Cats                                     | 0.66              | (0.50-0.87)             |
| Hot tub use                              | 0.70              | (0.54-0.91)             |
| Job as data processor/typist, programmer | 0.70              | (0.54-0.91)             |
| Fish (tank >10 gallon)                   | 0.74              | (0.58-0.94)             |
| Foam pillow use <b>†</b>                 | 0.73              | (0.55-0.95)             |
| Hospital volunteer †                     | 0.60              | (0.39-0.93)             |
| Gold exposure, occupational †            | 0.26              | (0.08-0.85)             |
| Exposure to welding <b>†</b>             | 0.40              | (0.16-0.96)             |

#### Am J Respir Crit Care Med Vol 170. pp 1324–1330, 2004

# Clinical manifestations and Diagnosis

# **Approach to Diagnosis**

- Appropriate Clinical Setting
- Supportive evidence (ie: organ involvement, BAL, PFTs, ACE)
- Find the Granuloma
- Exclude other causes of Granuloma
- "Can never be 100% sure"
  - Diagnosis of exclusion

# **Diagnostic evaluation**

The ATS consensus statement (1999) suggests performing a comprehensive initial evaluation including:

- history (occupational and environmental exposure)
- physical examination
- posteroanterior chest radiography;
- pulmonary function tests (spirometry and DLCO)
- peripheral blood counts, serum chemistries (calcium, liver enzymes, creatinine, blood urea nitrogen);
- urine analysis
- Electrocardiogram
- routine ophthalmologic examination
- tuberculin skin test

# Symptoms

- Nonspecific
  - Fever, sweats
  - Weakness,
  - Weight loss
  - Aches and pains
  - Lumps and bumps
- Psychological issues
- Organ specific symptoms

#### Malignancies Observed in Patients with Sarcoid Reactions

| Hematologic Malignancies | Solid Tumors     |  |
|--------------------------|------------------|--|
| CLL                      | Bile Duct        |  |
| CML                      | Breast           |  |
| Hodgkin disease          | Esophagus        |  |
| NHL                      | Renal            |  |
| T-Cell Lymphoma          | Pancreas         |  |
|                          | Rectum           |  |
|                          | Stomach          |  |
|                          | Lung             |  |
|                          | Melanoma         |  |
|                          | Ovary/Testicular |  |

# Laboratory Testing

- Routine bloodwork
  - Blood counts (CBC)
    - Lymphopenia (45%); leukopenia (30%)
    - Anemia up to 20%; low platelets < 2%</li>
  - Hepatic profile
    - Isolated Alk phos
    - Transaminitis
  - ACE level
    - Gaucher disease, leprosy, untreated hyperthyroidism, psoriasis, infants with ARDS, amyloidosis, and histoplasmosis
    - Polymorphisms, ACE inhibitors

# **More Directed Testing**

#### Sarcoid clinic:

- ACE, lysozyme, ESR, CRP
- RF, CCP, ANA
- Immunoglobulins, Vit D, Ca++
- CK, aldolase
- histoplasma, coccy studies
- Soluble IL-2r and KL-6, some centers
- Biopsy affected site
- BAL, biopsy lung





## **Diagnosis-Ocular**

- Eye: anterior or posterior uveitis, mass
- Testing: Slit-lamp eye exam, MRI
- Diagnosis: can biopsy lid if small lesions
  - Reluctant if no visible lesion (yield < 20-50%)

25% of patients

# Eye

#### Courtesy: Ramana Moorthy













## **Diagnosis and Derm**

#### • Skin: many rashes

- Lupus pernio (biopsy)
- Nodules, flat patches (biopsy)
- Erythema Nodosum (biopsy non-specific)
- Diagnosis: Appearance can be classic, biopsy to support

20% of patients

# Skin



#### Erythema nodosum

# Skin

#### Terrence DEMOS [tdemos@lumc.edu], with permission



Lupus pernio

![](_page_50_Picture_4.jpeg)

![](_page_50_Picture_5.jpeg)

![](_page_51_Picture_0.jpeg)

![](_page_51_Picture_1.jpeg)

![](_page_51_Picture_2.jpeg)

![](_page_51_Picture_3.jpeg)

![](_page_51_Picture_4.jpeg)

![](_page_51_Picture_5.jpeg)

![](_page_51_Picture_6.jpeg)

![](_page_51_Picture_7.jpeg)

## Diagnosis- cardiac

- Heart: dysrhythmia, pericardial, pulm htn if severe, causing reduced LV function
- Testing: EKG, echo, Holter,
  - MRI, PET, EPS → ?AICD
- Diagnosis:
  - Can biopsy heart, but not typical
  - Presumed if sarcoidosis affecting other organs

5% symptomatic, 30% incidental, Japanese

![](_page_53_Picture_0.jpeg)

Small patches of basal involvement, usually clinically silent

![](_page_53_Picture_2.jpeg)

Re-entrant circuit involving area of granuloma/fibrosis leading to VT

![](_page_53_Picture_4.jpeg)

Large area of septal involvement, often clinically manifest as heart block

![](_page_53_Picture_6.jpeg)

Extensive areas of LV and RV involvement, often clinically manifest as heart failure +/- heart block +/- VT

Birnie, D.H. et al. J Am Coll Cardiol. 2016;68(4):411–21.

# Heart

![](_page_54_Figure_1.jpeg)

Birnie, D.H. et al. J Am Coll Cardiol. 2016;68(4):411-21

| Therapy                                | Medication                                                             | Mechanism                                           | Potential benefit                                                                                                                                                                                                                               | Potential harm                                                                                                     |
|----------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Medical<br>immunosupressive<br>therapy | Prednisone (level<br>of evidence C)                                    | Anti-<br>inflammatory,<br>start 40–60<br>mg per day | No RCT data. An observational study of 23 cardiac sarcoid subjects suggests that <sup>18</sup> F-FDG PET may guide steroid therapy (LVEF of 3.8% per reduction in SUV volume of 100 cm <sup>3</sup> above a threshold value, P=0.022) (18)      | Diabetes, weight gain,<br>hypertension, insomnia,<br>depression and irritability,<br>fractures, infection          |
|                                        | Methotrexate<br>(level of evidence<br>C)                               | Anti-<br>metabolite<br>and immune-<br>modulator     | Steroid-sparing. No RCT data. In a three year open-label study<br>comparing 7 vs. 10 CS subjects treated with steroid or steroid + MTX,<br>respectively, steroid + MTX had improved LVEF (44.5%±13.8% vs.<br>60.7%±14.3%, P=0.04) ( <u>19</u> ) | Thrombocytopenia, anemia,<br>immunosuppression, pulmonary<br>and liver toxicity, neurologic<br>toxicity, infection |
|                                        | Other immune-<br>modulators (level<br>of evidence C)                   | Varied                                              | Steroid-sparing. Case reports only have included Infliximab,<br>Azathioprine, Cyclosporine, Anti-malarials, Pentoxifylline,<br>Azathioprine, Thalidomide                                                                                        | Anemia, immunosuppression,<br>other specific toxicities                                                            |
| Medical therapy<br>for heart failure   | ACE/ARB (level<br>of evidence A)                                       | Improves<br>adverse<br>cardiac<br>remodeling        | Class I to reduce mortality and morbidity of HFrEF. Class IIa for<br>structural heart disease without impaired LVEF or symptoms (20)                                                                                                            | Renal impairment, electrolyte<br>abnormality, allergy,<br>angioedema, cough                                        |
|                                        | Beta-blockers<br>(level of evidence<br>C)                              | Negative<br>inotrope,<br>delays AV<br>conduction    | Class I to reduce mortality and morbidity for HFrEF (20)                                                                                                                                                                                        | Fatigue, cardiac conduction<br>block, mood effects, erectile<br>dysfunction                                        |
|                                        | Diuretics and<br>restricted dietary<br>sodium (level of<br>evidence C) | Fluid and<br>sodium<br>excretion                    | Class I for HFrEF and symptoms (20)                                                                                                                                                                                                             | Renal impairment, electrolyte abnormality, orthostasis                                                             |

Hulten et al. Cardiac sarcoidosis. Cardiovasc Diagn Ther 2016;6(1):50-63

|                   | Intervention                                                       | Mechanism                                            | Potential benefit                                                                                                                                                                                                                                                                                                                                                                        | Potential harm                                                                                                                              |
|-------------------|--------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Device<br>therapy | ICD,<br>secondary<br>prevention<br>(level of<br>evidence C)<br>(7) | Defibrillation<br>of potential<br>recurrent<br>VT/VF | Class I recommendation to reduced mortality in patients with structural heart disease and syncope, VT/VF, or sustained VT/VF inducible by EP study. Class III if life-expectancy <1 year (7)                                                                                                                                                                                             | Pain, infection, cost, lead<br>fracture, need for re-<br>implantation, inappropriate<br>shock                                               |
|                   | ICD, primary<br>prevention<br>(level of<br>evidence C)<br>(7)      | Defibrillation<br>of potential<br>VT/VF              | Class I recommendation to reduce mortality in patients with structural heart disease and EF <30–35% despite medical therapy. Class IIa for those needing pacemaker, unexplained syncope, or sustained VT/VF inducible by EP study. LGE on CMR may be used to consider EP study. Class IIb for LVEF 36–49% or RVEF <40% despite medical therapy. Class III if life-expectancy <1 year (7) | Pain, infection, cost, lead<br>fracture, need for re-<br>implantation, inappropriate<br>shock                                               |
|                   | Pacemaker<br>(level of<br>evidence C)<br>(7)                       | Prevention of<br>immediately<br>fatal<br>arrhythmia  | Class I recommendation to reduce mortality and symptoms from complete heart block and bradyarrhythmia (7,21)                                                                                                                                                                                                                                                                             | Pain, infection, cost, lead<br>fracture, re-implantation,<br>device removal complex if<br>heart block resolves                              |
| Surgical          | Heart and lung<br>transplantation<br>(level of<br>evidence C)      | Surgical<br>transplant                               | Surgically replace organs affected by sarcoidosis with donor organs when end-stage organ dysfunction that may include refractory cardiogenic shock, IV inotrope dependence, peak $VO_2 < 10 \text{ mL/kg}$ per min with achievement of anaerobic metabolism, refractory VT/VF (20)                                                                                                       | Infection, need for chronic<br>immunosuppression, risk<br>of surgery, acute and<br>chronic rejection, chance<br>of recurrence ( <u>17</u> ) |

Hulten et al. Cardiac sarcoidosis. Cardiovasc Diagn Ther 2016;6(1):50-63

## Diagnosis- musculoskeletal

- Bone: pain, arthritis
- Testing: X-ray
- Diagnosis:
  - Can have classic features

< 5% have bone involvement; less than 1% have chronic muscle involvement

![](_page_58_Picture_0.jpeg)

![](_page_58_Picture_1.jpeg)

## Diagnosis- liver/spleen

- Liver/spleen: abd pain, satiety
- Testing: CT scan, US, liver Biopsy, cytopenias
- Diagnosis:

- Can see granulomas on biopsy, cirrhosis

Male, more common, involvement in 90%

# Liver/Spleen

![](_page_60_Picture_1.jpeg)

#### **Diagnosis of Neurosarcoidosis**

**CNS:** headache, memory loss, palsy, weakness, dizziness, visual, stroke

- Testing: EEG and EMG, muscle/nerve biopsy, MRI brain and spinal cord, CSF ACE
- Features: can be presenting sign, can occur during course of Rx, spontaneous remission
- Diagnosis: biopsy CNS or other. Clinical...

5% symptomatic, 15% overall

![](_page_62_Figure_0.jpeg)

#### Tavee et al, Clinics Chest Med 2015

# Neurologic/ophthalmic

![](_page_63_Picture_1.jpeg)

# Neurosarcoid

![](_page_64_Picture_1.jpeg)

35 year old AA male patient with neurosarcoidosis and chronic headaches 44 year old WF with visual changes, personality changes and chronic headache 36 year old male patient with history of "stroke"slurred speech and right sided weakness.

[A]

Study Date:5/ Study Time:3:

#### **Pulmonary Diagnosis of Sarcoid**

Lung: cough, short of breath, chest pain

- Testing: PFTs, chest x-ray and CT scan
- Diagnosis: often requires biopsy
  - to exclude other things that look like sarcoid
  - to support the diagnosis of sarcoid
  - Bronchoscopy (BAL, Biopsy), Mediastinoscopy

# 54 y/o female with spot on lung

![](_page_66_Picture_1.jpeg)

![](_page_67_Picture_0.jpeg)

#### PFTs

- Restrictive pattern most common
  - Diffusing capacity first, then TLC
- Can have obstruction (asthma-like)
   ACCESS >13%
- Low Oxygen levels at rest, with exercise or sleep, but not prominent

# Lung

# Stage 0 Normal (5%, ACCESS 8%) Stage 1 Large chest lymph nodes only (50%,40%)

- Stage 2 Chest nodes and lung infiltrate (25%,37%)
- Stage 3 Lung infiltrates only (15%, 10%)Stage 4 Fibrosis (5%, 5%)

# **Prognostic factors**

#### By Chest X-ray (not CT):

- Stage 1 Very good 80% improve
- Stage 2 Good 50% improve
- Stage 3 Fair 20% improve
- Stage 4 Poor (Scar), high mortality
- Stage 0 = Normal (up to 8%)

\* Means nothing if extrapulmonary involvement

![](_page_70_Picture_0.jpeg)

Stage 1

![](_page_70_Picture_2.jpeg)

![](_page_71_Picture_0.jpeg)

Stage 2




Stage 3 -Perilymphatic -Peribronchovascular





Stage 4











## Sarcoid Granuloma

Hu LX, Chen RX, Huang H, Shao C, Wang P, Liu YZ, Xu ZJ. Endobronchial Ultrasound-guided Transbronchial **Needle Aspiration** versus Standard Bronchoscopic Modalities for Diagnosis of Sarcoidosis: A Meta-analysis. Chin Med J 2016;129:1607-15.

|                                   | EBUS-T     | BNA      | CTB                     | A        |             | Odds Ratio           |      |      | Odds Ratio                            |
|-----------------------------------|------------|----------|-------------------------|----------|-------------|----------------------|------|------|---------------------------------------|
| Study or Subgroup                 | Events     | Total    | Events                  | Total    | Weight      | M-H, Fixed, 95% Cl   | Year | -    | M-H, Fixed, 95% Cl                    |
| Tremblay A 2009                   | 20         | 24       | 14                      | 23       | 10.2%       | 3.21 [0.82, 12.54]   | 2009 |      |                                       |
| Zhang S 2011                      | 26         | 30       | 33                      | 40       | 16.1%       | 1.38 [0.36, 5.22]    | 2011 |      |                                       |
| LI KS 2014                        | 27         | 29       | 18                      | 28       | 5.4%        | 7.50 [1.47, 38.32]   | 2014 |      |                                       |
| Goyal A 2014                      | 16         | 28       | 17                      | 76       | 16.7%       | 4.63 [1.84, 11.64]   | 2014 |      |                                       |
| Gupta D 2014                      | 41         | 55       | 30                      | 62       | 30.6%       | 3.12 [1.42, 6.85]    | 2014 |      |                                       |
| LI YH 2015                        | 22         | 23       | 10                      | 12       | 2.4%        | 4.40 [0.36, 54.37]   | 2015 |      |                                       |
| Gnass 2015                        | 23         | 30       | 20                      | 34       | 18.6%       | 2.30 [0.78, 6.82]    | 2015 |      |                                       |
| Total (95% CI)                    |            | 219      |                         | 275      | 100.0%      | 3.22 [2.09, 4.96]    |      |      | •                                     |
| Total events                      | 175        |          | 142                     |          |             |                      |      |      | 1.000                                 |
| Heterogeneity: Chi <sup>2</sup> = | 3.62, df=  | 6 (P = 0 | 0.73); I <sup>#</sup> = | 0%       |             |                      |      |      | -                                     |
| Test for overall effect           | Z= 5.30    | (P < 0.0 | 0001)                   |          |             |                      |      | 0.01 | CTBNA EBUS-TBNA                       |
|                                   | EBUS-T     | BNA      | TBLE                    | 3        |             | Odds Ratio           |      |      | Odds Ratio                            |
| Study or Subgroup                 | Events     | Total    | Events                  | Total    | Weight      | M-H, Random, 95% Cl  | Year | ·    | M-H, Random, 95% Cl                   |
| 9.1.1 Retrospective               |            |          |                         |          |             |                      |      |      |                                       |
| Nakajima T 2009                   | 32         | 35       | 14                      | 35       | 8.1%        | 16.00 [4.09, 62.53]  | 2009 | 1    |                                       |
| Plit M 2012                       | 31         | 37       | 29                      | 37       | 8.4%        | 1.43 [0.44, 4.61]    | 2011 |      |                                       |
| Hong G 2013                       | 28         | 31       | 11                      | 31       | 8.0%        | 16.97 [4.19, 68,79]  | 2013 | 1    |                                       |
| LI YH 2015                        | 22         | 23       | 24                      | 35       | 6.6%        | 10.08 [1.20.84.62]   | 2015 |      | · · · · · · · · · · · · · · · · · · · |
| Tong B 2015                       | 22         | 47       | 29                      | 62       | 9.1%        | 1.00 (0.47, 2.14)    | 2015 |      | -                                     |
| Dziedzic DA 2015                  | 549        | 653      | 128                     | 653      | 9.5%        | 21 65 [16 28 28 79]  | 2015 |      | +                                     |
| Subtotal (95% CI)                 | 040        | 826      | 120                     | 853      | 49.7%       | 6.45 [1.58, 26.38]   | 2010 |      |                                       |
| Total events                      | 684        |          | 235                     |          |             |                      |      |      |                                       |
| Heterogeneity Tau <sup>2</sup> =  | 2 69 Chi   | = 70 4   | df = 5(                 | P < 0.0  | 0001) 17=   | 93%                  |      |      |                                       |
| Test for overall effect.          | Z = 2.59 ( | P = 0.00 | 19)                     | ,        | 0001/,1 -   |                      |      |      |                                       |
| 0.4.2 Non retrospecti             | into.      |          |                         |          |             |                      |      |      |                                       |
| 5.1.2 Non red ospecu              | 22         | 27       | 0                       | 27       | 0.4 %       | 10 00 10 50 50 40    | 2011 |      |                                       |
| OLEM 2012                         | 23         | 21       | 8                       | 21       | 0.1%        | 13.00 [3.00, 02.43]  | 2011 |      |                                       |
| DIAM 2012                         | 51         | 54       | 19                      | 52       | 0.1%        | 29.53 [8.10, 107.69] | 2012 |      |                                       |
| PIIL M 2013                       | 40         | 49       | 33                      | 49       | 8.4%        | 5.45 [1.67, 17.83]   | 2013 |      |                                       |
| LI KS 2014                        | 27         | 29       | 8                       | 22       | 7.5%        | 23.63 [4.41, 126.58] | 2014 |      |                                       |
| Goyal A 2014                      | 16         | 28       | 97                      | 141      | 9.0%        | 0.60 [0.26, 1.39]    | 2014 |      |                                       |
| Gupta D 2014                      | 41         | 55       | 78                      | 112      | 9.1%        | 1.28 [0.62, 2.64]    | 2014 |      |                                       |
| Subtotal (95% CI)                 |            | 242      |                         | 403      | 50.3%       | 5.34 [1.43, 19.90]   |      |      |                                       |
| Total events                      | 203        |          | 243                     |          |             |                      |      |      |                                       |
| Heterogeneity: Tau <sup>a</sup> = | 2.33; Chi  | *= 43.57 | 7, df = 5 (             | P < 0.0  | 0001); lª = | 89%                  |      |      |                                       |
| Test for overall effect:          | Z= 2.49 (  | P = 0.01 | )                       |          |             |                      |      |      |                                       |
| Total (95% CI)                    |            | 1068     |                         | 1256     | 100.0%      | 5.89 [2.20, 15.79]   |      |      | •                                     |
| Total events                      | 887        |          | 478                     |          |             |                      |      |      |                                       |
| Heterogeneity: Tau <sup>a</sup> = | 2.64; Chi  | *= 153.8 | 82, df = 1              | 1 (P < 0 | 0.00001);1  | P = 93%              |      | +    | M 4 46 4                              |
|                                   |            |          |                         |          |             |                      |      | 0.01 | 1 1 10 1                              |
| Test for overall effect           | Z = 3.530  | P = 0.00 | 04)                     |          |             |                      |      |      | THE R PRIME THE                       |





Fibronectin, Collagen Matrix Epitheloid macrophages Multinucleated giant cell Perimeter of fibroblasts Surrounding lymphocytes Treatment

# **Clinical phenotypes**

Sarcoidosis vs Sarcoidoses

- Do we lump or split the phenotypes?
  - Lofgren syndrome and others
    - European, good prognosis
  - Lung only
    - Inflammatory vs fibrotic
    - African American, poor prognosis
  - Skin or other organ only
  - Lymphopenic Phenotype (Crouser ED, Chest 2010)
    - "The CD4+ lymphopenic sarcoidosis phenotype is highly responsive to anti-tumor necrosis factor-{alpha} therapy"

## Sarcoidosis

- Difficult to tell who will progress
  - 50% improve without therapy
    - some slowly, some very quickly
  - 20-30% stabilize with and after therapy
  - 20-30% get worse even with aggressive therapy
  - Greater than 5% die
- Not all sarcoid is created equal...

## **Treatment Philosophy**

- Don't over treat
- Manage symptoms
- Manage Expectations
- Two things that can go wrong:
  - too much Prednisone
  - not recognizing poor prognosis/debilitating manifestations

## When to treat ?

Traditionally difficult to treat (need long-term therapy possibly with many agents)

- Lung stage III, vocal cord/upper airway obstruction
- Eye (posterior uveitis) and vision loss
- Central nervous system (seizure, mass)
- Cardiac (syncope, rhythm problem, failure)
- Skin (disfiguring, lupus pernio)
- Misc: Calcium, stones, portal, liver, fatigue, arthritis

## **Treatment options- first line**

#### CONSIDER NOT TREATING

- Can wait up to 6 months to see if spontaneous remission occurs (especially pulmonary)
- Side effects- weight gain, glucose, cataracts, bone loss, insomnia, infection, ulcer, adrenal
- Old dogma- early treatment alters natural course of disease unfavorably...
- If treat, not committed to long term therapy.
  Bursts and alternate dosing en vogue

## **Treatment options- first line**

- Topical steroids as primary therapy MILD DISEASE
  - Eyedrops
  - Creams/ointments
  - Intralesional
  - Inhaled
    - Alone
    - <u>After oral therapy for maintenance</u>

## **Treatment options- first line**

#### Steroids are the mainstay of treatment

- Start 20 mg prednisone a day, need to follow closely.
- May need more or intravenous if severe, difficulty expected, or acute disease
- May be able to taper over first 1-3 months to a lower dose or every other day dosing
- Retrospective study suggests 21 day course 20mg/d can treat exacerbation

McKinzie BP et al. Efficacy of short-course, low-dose corticosteroid therapy for acute pulmonary sarcoidosis exacerbations. Am J Med Sci. 2010 Jan;339(1):1-4.

| Drug               | Dosage                                       | Toxicity                                     | Monitoring                            |
|--------------------|----------------------------------------------|----------------------------------------------|---------------------------------------|
| Prednisone         | 5 - 40 mg/day                                | DM, HTN, Weight gain,<br>Cataracts, Glaucoma | BP, weight, BG, bone<br>density       |
| Hydroxychloroquine | 200 – 400 mg/day                             | Ocular, Hepatic, Cutaneous                   | Eye exam 6-12 months                  |
| Methotrexate       | 5 – 20 mg / weekly                           | Hematologic, Pulmonary,<br>Hepatotoxic       | CBC, CMP 1-3 months                   |
| Azathioprine       | 5 - 200 mg/daily                             | Hematologic, GI                              | CBC, CMP 1-3 months                   |
| Leflunomide        | 10 – 20 mg/day                               | Hematologic, Hepatotoxic                     | CBC, CMP 1-3 months                   |
| Mycophenolate      | 500 – 2000 mg/day                            | Hematologic, GI                              | CBC, CMP 1-3 months                   |
| Infliximab         | 3-5 mg/kg load/2 week<br>every 4-8 weeks;    | Infusion rxn, Infections, HF,<br>?malignancy | PPD prior<br>Hold drug for infections |
| Adalimumab         | 40 – 80 mg every 1-2<br>weeks                | Infusion rxn, Infections, HF,<br>?malignancy | PPD prior<br>Hold drug for infections |
| Rituximab          | 1000 mg load, repeat at 2<br>weeks, 24 weeks | Infusion rxn, Infections, HF,<br>?malignancy | PPD prior<br>Hold drug for infections |

# Treatment "options"

#### Web-based medicine

- www.gethealthyagain.com
- www.ivillagehealth.com
- Chelation
- Marshall plan
- Supplements??
  Melatonin, Lancet 1995
  Fish oil??
  Antioxidants??
  "Enzyme therapy"

- Carcinosin
  - Euphrasia
  - Graphites
  - Leuticum (Syphilinum)
  - Bacillinum
  - Sepia
  - Phosphorus
  - Arsenicum album







Roberts SD, Wilkes DS, Burgett RA, Knox KS. Chest. 2003 Nov;124(5):2028-31.

# Conclusion

- Sarcoid is a systemic disease
- Diagnosis of exclusion
- Most people do well with with/without modest therapy
- Overtreatment has consequences
- Some people will have a complicated course and need aggressive therapy
- It takes a village
- Sarcoid specialists exist

Questions?