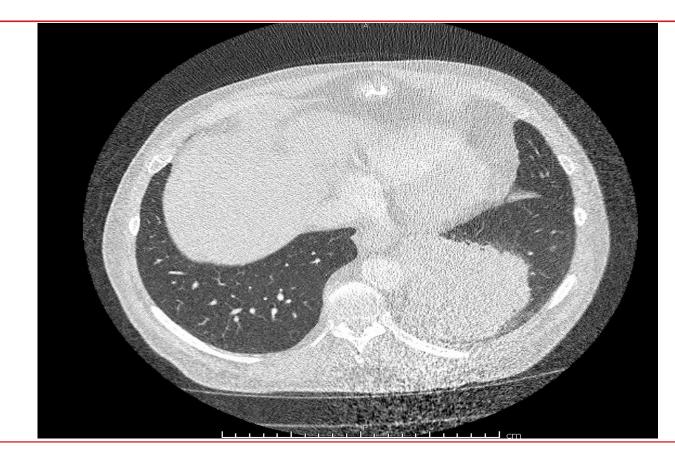


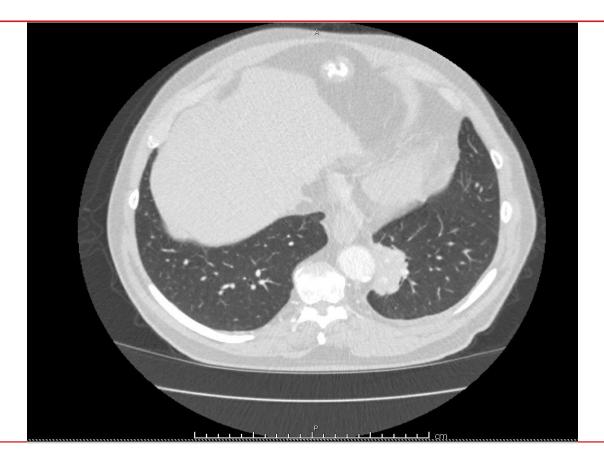
Making Cancer History®


Immunotherapy Cancer's Checkpoint Inhibitors, Checkmate?

David Paul, MD Physician Executive Banner MDA Cancer Center at BUMC-P

Case presentation: Stage IV Malignant Melanoma

- 72 y.o. Caucasian gentleman with a hx of Stage Unknown Malignant Melanoma resected L neck 1999
- No prior relapses or other hx of malignancies. Negative FH
- He presents in September 2016 with nausea and abdominal pain radiating to his back. He was found to have a 10 cm AAA needing emergent endograft repair.
- Incidental findings: 9 mm L occipital lobe lesion, 11 cm LLL mass, and 2 N2 LNs confirmed on PET/CT
- CT guided needle Bx of LLL mass: Metastatic Melanoma (BRAF mutation negative)



- Stereotactic Radiosurgery (SRS) to solitary brain lesion, 5 fractions (35Gy)
- Pembrolizumab IV q 3 wks Dec 2016-Feb 2018
- Toxicity: progressive NCI grade 2 rash treated with topicals and breaks from treatment
- Serial CT scans of chest to monitor response

Making Cancer History"

Diagnosis: A. Left subcarinal lymph node: •One lymph node, negative for metastatic disease.

B. Lung, left lower lobe, lobectomy specimen:
Necrotic mass, 4.6 cm with surrounding fibrosis and inflammation, including overlying pleural fibrosis; negative for residual melanoma (100% tumor necrosis).

•Bronchovascular resection margin, negative for neoplasm.

•Three attached lobar lymph nodes, negative for metastatic disease.

C. Left inferior pulmonary ligament lymph node specimen:•Two lymph nodes, negative for metastatic disease.

D. Left posterior hilar lymph node specimen:Four lymph nodes, negative for metastatic disease.

E. Left carinal lymph node #2:

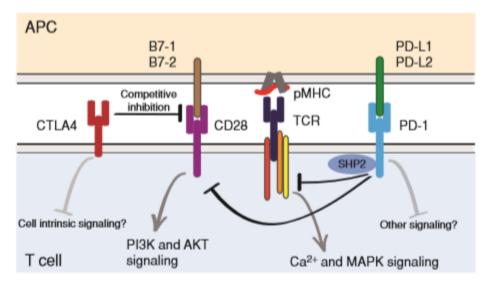
•One lymph node with microscopic focus of necrosis consistent with necrotic neoplasm (100% tumor necrosis); negative for viable metastatic disease.

F. Left peribronchial lymph node specimen:•Two lymph nodes, negative for metastatic disease.

Practice changing advances in last 25 years

- Tyrosine kinase inhibitors (TKIs): small molecules that target signal transduction pathways inside cell and not dependent on cell cycle: imatinib (BCR/ABL), erlotinib (EGFR), crizotinib (ALK), ibrutinib (Bruton's tk)
- Cladribine for hairy cell leukemia
- Monoclonal antibodies: rituximab (CD20), trastuzumab/pertuzumab (Her 2 neu family)
- Checkpoint inhibitors: for the first time, treatment that was tumor agnostic with broad implications and potential applicability: nivolumab (PD-1), durvalumab (PDL-1), ipilimumab (CTLA-4)

Immunotherapy


- Nonspecific immunotherapies: alpha interferon, IL-2
- Monoclonal antibodies:
 - Targets: trastuzumab (her2) that alters downstream signaling
 - Flags: rituximab (CD20), daratumumab (CD38) that initiates A-DCC/C-DC
 - T cell immune tolerance interference: check point inhibitors
- Oncolytic viral therapy: T-VEC (viral replication inside cell) and subsequent antigen release
- T cell therapy: CAR-T that involves genetically altering patient's WBCs with chimeric antigen receptors that can recognize pt's cancer cells
- Cancer vaccines: sipuleucel-T for prostate CA as treatment, or HPV/HepB for prevention of associated malignancies

Checkpoint Inhibitors: how do they work?

- Immune checkpoint blockade removes inhibitory signals of T cell activation which enables tumor reactive T cells to overcome regulatory mechanics and mount an effective antitumor response.
- Regulatory mechanisms exist within a certain physiologic range to prevent autoimmunity.
- Malignant cells co-opt immune suppressive and tolerance mechanisms to avoid immune destruction.
- Basic bench research postulated that blocking these immune checkpoints would lead to increased T cell activation.

Figure 1. Molecular mechanisms of CTLA4 and PD-1 attenuation of T-cell activation. Schematic of the molecular interactions and downstream signaling induced by ligation of CTLA4 and PD-1 by their respective ligands. The possibility of additional downstream cell-intrinsic signaling mechanisms is highlighted for both CTLA4 and PD-1.

PD-1, PDL-1 and CTLA-4 are the current targets but not the whole story. Downstream signaling may be the next rich area to explore. Aside from the blockade effect directly seen with ipilumumab on CTLA-4, it also depletes regulatory T cells contributing to effect and toxicity.

Making Cancer History"

Current FDA approved checkpoint inhibitors

PD-1 (Programmed Cell Death) Inhibitors (checkpoint on T cells): Cemiplimab (Libtayo) Nivolumab (Opdivo) Pembrolizumab (Keytruda) PDL-1 (Programmed Cell Death Ligand) Inhibitors (checkpoint on CA): Atezolizumab (Tecentrig) Avelumab (Bavencio) Durvalumab (Imfinizi) CTLA-4 (Cytotoxic T lymphocyte-associated antigen 4) Inhibitors: Ipilimumab (Yervoy)

Summary of Tumor types currently approved

- Melanoma
- NSCLC
- SCLC
- RCC
- Hodgkins Lymphoma
- Urothelial Carcinoma

- MSI High of any histology
- HCC
- Gastric CA/GE junction
- Breast CA
- H&N (SCC)
- Merkel Cell CA

Many factors at play in determining degree of toxicity:

- 1. Type of cancer and its site (melanoma, rash and colitis and less pneumonitis. Lung/RCC, more pneumonitis)
- 2. Dose (PD-1 & PDL-1 std, low vs high in CTLA-4)
- 3. Combinations (PD-1/PDL-1 alone vs combos with CTLA-4)
- 4. Agent specific (PD-1: hypothyroid, pneumonitis, CTLA-4: colitis, hypophysitis, rash)

Toxicity Profiles

- In general: "the itis' "
- Fatigue
- Infusion rxns
- Dermatologic (especially in combo, 60%)
- Gastrointestinal (diarrhea)
- Liver (transaminitis)
- Endocrine (often permanent)
 - Thyroid, pituitary, adrenal, pancreas

Toxicity Profiles

- Pulmonary (cough, DOE, O2 requirements, exercise tolerance)
- Rheumatologic (A/M)
- Neuro (HA, encephalopathy, meningitis)
- Ocular (keratitis, uveitis)
- Renal
- Heme (anemia, cytopenias)
- Cardiac (myocarditis, pericarditis)

Toxicity profile: treatment

- Mild: Close observation
- Moderate to severe:
 - Treatment cessation
 - Steroids, topical, prednisone (0.5-1 mg/kg), IV
 - Hospitalization (fluids, IV steroids, IVIG)
 - Infliximab
 - Other immune modulators
- Opportunistic infections
- Cancer specific efficacy maintained, same for pts with autoimmune histories and treatments (excludes transplant pts)

PDL-1 expression

- Immunohistochemical testing (IHC)
- Highly variable expression that may or may not predicative or prognostic
- Differing stains and kits
- Tumor vs immune cell expression in result
- Difficult deciding threshold "positives" on results
- Only 1/3 of pts with NSCLC express > 50%
- We may learn of better alternative biomarkers

PDL-1 expression and response

Crit Rev Oncol Hematol. 2016 Apr;100:88-98. doi: 10.1016/j.critrevonc.2016.02.001. Epub 2016 Feb 10.

PD-L1 expression in cancer patients receiving anti PD-1/PD-L1 antibodies: A systematic review and meta-analysis.

Gandini S¹, Massi D², Mandalà M³.

Meta-analysis of 20 RCT that included Melanoma, NSCLC, RCC in pts receiving anti PD-1/PDL-1 agents

1. +PDL-1 expression Melanoma: 53% risk reduction in mortality, RR 45% v 27%, correlation with expression increase and anti PD-1 agents

2. RR for nonsquamous NSCLC 29%(+) v 11% (-), squamous cell NSCLC RR equal for + or -

Landmark Clinical Trials

- Hodi et al, NEJM Aug 2010
 - 676 pt with Stage IV Melanoma randomized (3:1:1) Ipilimumab with GP100 vaccine, to GP100 vaccine, or ipilimumab
 - Best RR: 10.9% Ipi alone with 60% having disease stability of 2 years
 - 10 mos survival with IPI alone or combination vs 6 months vaccine (p<0.001)
 - Toxicity severe in some patients: 60% all grades, 10-15% Grade 3/4
 - First trial to demonstrate improved survival in Stage IV Melanoma with a check point inhibitor. Difficult to demonstrate with any agent.

Landmark Clinical Trials

- Checkmate 003: 2012 ASCO
 - Phase I Escalation Study of MDX-1106 (nivolumab) with NSCLC, Melanoma, CRPC, RCC, CRC
 - Increased RR with increased dose in NSCLC up to 32%, response duration 24 weeks, Grade 3/4 toxicity 14%
 - First trial to demonstrate activity of checkpoint concept in NSCLC
- Keynote 001: Garon et al, NEJM, May 2015
 - Phase I Dose Escalation Study of Pembrolizumab in NSCLC only
 - Overall RR 19% but **45%** if PDL-1 expression \geq 50%
 - Grade 3/4 Toxicity 9.5%

Landmark Clinical Trials (Melanoma)

- Robert et al, NEJM June 2015
 - RCT of 418 pts with Stage IV Melanoma (nivolumab vs dacarbazine)
 - 72.9% OS vs 42% at 1 year in favor of nivolumab
 - 40% RR vs 13.9%
- CHECKMATE 238 (3 yr updated results ESMO Sept 2019)
 - RCT of resected 906 Stage III/IV melanoma pts of Nivolumab (3mg/kg) vs Ipilimumab (10 mg/kg) for 1 year adjuvant treatment
 - Superior RFS for N at 36 mos: 58% v 45% (p<0.001); Gr 3/4 toxicity: 14% vs 46%
 - N effects were superior regardless of Stage, PDL-1 expression or BRAF mutation status
- KEYNOTE 006 Schacter et al, Lancet Aug 2017
 - RCT of 834 Stage IV Melanoma (pembrolizumab q2wks, q3wks or ipilimumab at 3mg/kg)
 - 3yr f/u: Median survival not yet reached (P), 16 mos IPI. 24 mos OS: 55%, 55%, 43%

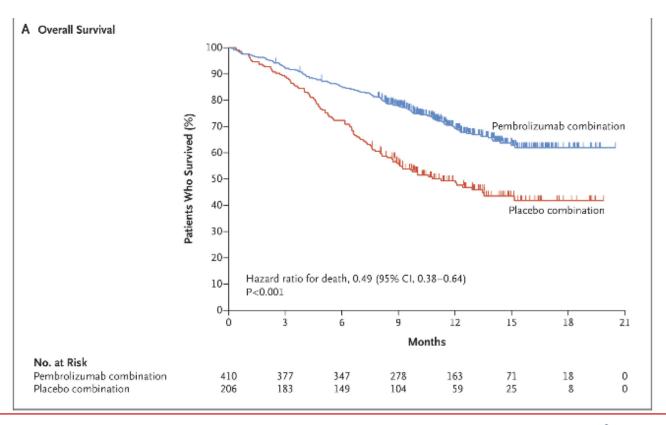
Landmark Clinical Trials: Melanoma

- CHECKMATE 067 5yr data (ESMO Sept 2019/Larkin et al NEJM Oct 2019)
 - RCT of 945 untreated, BRAF Stage III/IV pts (Nivolumab-3, Ipilimumab-3, or N-1/I-3)
 - Toxicity: Grade 3/4 treatment related events, 59% N/I, 28% I, 23% N
 - RR: 58% combo, 45% Nivolumab and 19% Ipilimumab
 - Median OS: Combo, not reached; 36.9 months N and 19.9 mos I
 - 5 yr OS: Combo, 52%, 44% N, and 26% I
- CHECKMATE 511 Lebbe' et al, JCO April 2019
 - Phase III RCT of untreated Stage IV Melanoma pts with Nivo1/Ipi3 vs Nivo3/Ipi1
 - 1 year f/u thus far with similar efficacy as original (50.6% RR vs 45.6%)
 - Grade 3/4 toxicity down to 34% vs 48%

Summary of Checkpoint Inh. Melanoma Trials

- Stage III Adjuvant: Nivolumab frontline (category 1), 1 year
- Stage IV Metastatic or Resected:
 - Nivolumab alone frontline (category 1)
 - Pembrolizumab alone frontline (category 1)
 - Nivolumab plus Ipilimumab (4 doses) frontline (category 1)
 Duration? Continue until toxicity or progression of disease, 2 years?

BRAF mutated? Who goes first?



Landmark Clinical Trials NSCLC

- Gandi et al NEJM May 2018
 - 2:1 RCT 616 Pts with Stage IV nonsquamous, non-mutated to platinum analogue/pemetrexed plus pembrolizumab or placebo, followed by pembro or placebo plus pemetrexed as maintenance
 - Primary endpoints: PFS and OS; Secondary Endpoints: RR, resp duration and safety
 - Overall survival at 1 year: 69% vs 49% (p, 0.001); PFS 8.8 mos vs 4.9 mos (p< 0.001) both were regardless of PDL-1 expression
 - RR 47.6% vs 18.9% in favor of pembrolizumab (p<0.001)
 - Grade 3 or higher toxicity was 69% but only 9% attributed to immune system related events

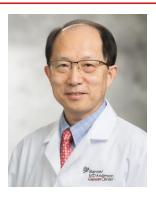
Landmark Clinical Trials NSCLC

Banner MDAnderson

Making Cancer History"

Landmark Clinical Trials NSCLC

- Antonia et al, NEJM Dec 2018
 - RCT 713 Pts Stage III unresectable NSCLC following definitive concurrent chemo/RT to durvalumab (PDL-1) or placebo x 1 year
 - Primary endpoints: OS and PFS
 - At 24 months: OS 69% vs 55% (p<0.005); PFS 17.2 mos vs 5.6 mos
 - Grade 3/4 Toxicity at 30% overall but individual categories including immune related events < 5%. Mild rashes and pulm sx were most common



Future Directions

- Increased trials with Ipilumumab using lower doses (1mg/kg)
- Exploring earlier use of these active agents in adj settings
- Combinations of checkpoint inhibitors
 - With other inhibitors (Ipi +)
 - With chemo
 - With targeted agents
- Bench research investigating downstream signals from T cell receptor
- Search of other biomarkers to identify receptive cancers

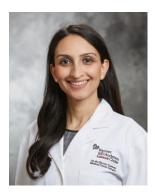
Medical Oncology

Sucai Bi, MD PhD

Specializes in Medical Oncology and Hematology

Lawrence Kasper, MD Specializes in Medical Oncology

Todd Erickson, MD Specializes in Medical Oncology and Hematology



Melissa Yap, NP

Making Cancer History"

Radiation Oncology

Arti Parekh, MD Specializes in Radiation Oncology

Rachit Kumar, MD Specializes in Radiation Oncology

Candace Chen, PA Specializes in Radiation Oncology

Surgical Oncology

Stephanie Byrum, MD Specializes in Breast Surgical Oncology

Thomas Shellenberger, MD Head and Neck Surgical Oncology

Chafeek Tomeh, MD

Specializes in Otolaryngology

Then & Now

Making Cancer History"