Acid-base basics

C. Singarajah, M.D, F.C.C.P

Definitions

AN "osis " means a process Eg Acidosis.

Alkalaemia meanspH > 7.44Acidaemia meanspH < 7.36</th>

Definitions

Respiratory means changes in PCO₂ values c.f. to expected/normal.

 Metabolic means changes in serum bicarbonate

Homeostasis

Various buffers in the body

♦HCO₃/CO₂ buffer system is clinically used.

 Other buffers are hemoglobin, bone, proteins

Homeostasis

Body tries to keep the pH between 7.36-7.44

◆Body tries to keep ratio of HCO₃/CO₂ fixed.

Basic disorders

Metabolic acidosisDecreased bicarbonate

Metabolic alkalosisIncreased bicarbonate

Basic disorders

Respiratory acidosis
 Increased PCO₂

Respiratory alkalosis
 Decreased PCO₂

ACO_3/CO_2 ratio

 Changes in one parameter are compensated by same direction changes in the other:
 Increased HCO₃ leads to increased CO₂ etc

Compensation

Lungs compensate for metabolic processes.

minutes to hours

 Kidneys compensate for respiratory processes.
 hours to days

Compensation

Analysis of ABG

◆ Obtain ABG, chem 7.

PH - alkalemic or acidaemic ?

Check P_aCO₂; has it changed in direction to explain pH change?

Analysis

If P_aCO₂ has changed in appropriate direction, does it account for the whole change?
Δ P_aCO₂ 10 = Δ pH 0.08 acutely
Δ P_aCO₂ 10 = Δ pH 0.04 chronically

Analysis

If answer is No to either of the previous two questions Must be a metabolic acid base problem in addition

pН	PCO2	Interpretation
7.40	40	Normal
7.48	30	Respiratory alkalosis
7.56	20	Respiratory alkalosis
7.32	50	Respiratory acidosis
7.24	60	Respiratory acidosis
7.30	60	Respiratory acidosis + Metabolic alkalosis
7.48	20	Respiratory alkalosis + Metabolic acidosis

Analysis

Is serum bicarbonate high or low ?

If low, calculate the anion gap. Na - Chloride - bicarbonate = AG

Analysis of gap acidosis

If there is an anion gap, then check:

- ◆ M Methanol
- ◆U Uremia
- ◆D DKA
- ◆ P Propylene glycol

- ◆I Iron, infection
- ◆ L High lactate
- ◆E Ethanol
- ◆S Salicylate

Correction of AG for low albumin

Low albumin hides a high anion gap

2.5 x (Normal albumin - measured albumin)

Measured AG

Corrected Anion gap

Analysis of delta gap

 If anion gap present analyze delta gap to look for second acidosis. In effect, correct the bicarbonate for the presence of the anion gap.

• $HCO_{3(c)} = HCO_{3(a)} + \{Actual AG --normal AG\}$

• E.g. =
$$8 + \{34 - 10\} = 32$$

The delta gap.

 Tries to back track in time to when the patient did not have an anion gap that was high.

 Assumes that as AG increases, bicarbonate drops on a 1:1 ratio.

Analysis of delta gap.

If corrected bicarbonate is higher than normal : implies metabolic alkalosis.

If corrected bicarbonate is lower than normal : implies non gap metabolic acidosis.

Metabolic non gap acidosis

Analysis of respiratory compensation

Any metabolic acidosis (gap or non gap) - use Winter's formulae to assess respiratory compensation.

 $P_aCO_{2(e)} = \{HCO_3 \times 1.5\} + 8 \pm 2$

Bicarbonate	PCO2	Interpretation
24	40	Normal
10	21-25	Metabolic acidosis + appropriate respiratory compensation
10	30	Metabolic acidosis + Respiratory acidosis
10	15	Metabolic acidosis + Respiratory alkalosis

Analysis of respiratory compensation.
 If actual P_aCO₂ is higher than P_aCO₂ (e), then there is a respiratory acidosis (even if <40).

♦ If actual P_aCO₂ is lower than P_aCO₂
(e), then there is a respiratory alkalosis
(even if > 40).

Analysis of non gap metabolic acidosis

 Whenever there is a non gap metabolic acidosis, calculate the urinary anion gap.
 UAG = Na + K - Chloride.

Two types of non gap acidosis
Renal and non renal

Analysis of non gap metabolic acidosis

 If UAG is a positive value, implies renal source of non gap acidosis eg RTA.

 If UAG is a negative value, implies non renal source such as diarrhoea

Analysis of metabolic alkalosis

 Either adding bicarbonate and/or losing acid. Check urine chloride If low : implies chloride responsive If high : implies chloride unresponsive

Mixed disorders

• A normal pH may be normal

A normal pH may be abnormal if
 combined metabolic and alkalotic process.

Mixed disorders

 No way to have a combined respiratory acidosis and respiratory alkalosis.

 If bicarbonate and P_aCO₂ have changed in opposite directions : a mixed disorder exists

Mixed disorders

• Up to 3 at a time

- Metabolic gap acidosis, metabolic alkalosis and respiratory alkalosis
- Metabolic gap acidosis, metabolic alkalosis and respiratory acidosis
- Metabolic gap acidosis, metabolic non gap acidosis and respiratory acidosis

◆ etc!!!

■ pH 7. 32, PaC0₂ 80

Acute respiratory acidosisPlus metabolic alkalosis

■ pH 7. 10, PaCO₂ 60

Acute respiratory acidosis

Plus metabolic acidosis

Two disorders as pH is lower than a respiratory process could explain

Bicarbonate 10
AG 30
Delta gap 20
Corrected bicarbonate 30
Metabolic gap acidosis
Plus metabolic alkalosis

Bicarbonate 5
AG 18
Delta gap 8
Corrected bicarbonate 13
Metabolic gap acidosis
Plus metabolic non gap acidosis

Bicarbonate 10
 PaC0₂ 25
 Appropriate respiratory compensation

- Bicarbonate 10
- **PaC0**₂ 40
- Inappropriate respiratory compensation
- Under compensated
- Respiratory acidosis and metabolic acidosis - May need intubation!!!

Bicarbonate 10

- **PaC0**₂ 40
- Anion gap 40
- Metabolic acidosis gap
- Metabolic alkalosis
- Respiratory acidosis
- A triple disorder

Metabolic gap acidosis
 Salicylate - dialysis
 Renal failure - renal Rx
 Lactic acidosis - resuscitate
 DKA - insulin, fluids, Rx trigger
 Methanol OD - dialysis

Metabolic non gap acidosis
 Diarrhea - Rx the diarrhea
 Renal tubular acidosis - Rx the cause
 TPN - change to acetate salts of Na and K

 Metabolic alkalosis
 NG suctioning - replace same fluid or stop suctioning
 Vomiting - replace with NS

Respiratory alkalosis
 Head injury
 Infection
 Alcohol withdrawal
 Anxiety
 Pain

Respiratory acidosis
 Over sedation
 COPD
 Neuromuscular disease