

Lung Transplantation For the Internist

Tony N Hodges MD FCCP FACP

Discussion Focus

- Historical Background
- Indications/Contraindications
- Timing of Referral
- Surgical Technique
- Postoperative Management and Complications
- Survival and Functional Outcomes
- Future Directions

Historical Perspective

1963 - James Hardy performed first lung transplant

1976 - Cyclosporine introduced

1981 - Stanford performs first heart-lung

transplant

1983 - Toronto performs first single lung transplant

1986 - Toronto performs first double lung transplant

1987 - Wash U/Barnes first single lung transplant in US

- 1992 USC performed first living lobar lung transplant
- 2005 Lung Allocation Score Introduced

Lung Transplant Options

Heart-Lung TX

Single Lung TX

Bilateral Sequential Lung TX

Bronchial Anastomosis for Lung Transplantation

Reasons for Early Era Failures

- Poor patient selection Inadequate lung preservation Excessive immunosuppression No/poor infection diagnosis/prophylaxis No way to diagnose AMR Poor understanding of the physiology of the transplanted lung
- Limited donor availability

Candidate Selection

Indications

When Should Patients Be Referred ?

Absolute Contraindications

- Malignancy within prior 2 years
- Acute medical instability
- Untreatable dysfunction of other major organ
- Chronic poorly controlled
- infection
- Active TB
- Severe Musculoskeletal disease

- Obesity (BMI>35)
- Substance addiction in prior 6 months
- Absence of reliable support system
- Untreatable psychosocial problems
- Non-compliance

Referral to transplant center:

- BODE index of 5
- FEV1 < 25% pred
- Disease progression despite max treatment
- PCO2 > 50
- Moderate to severe pulm HTN
- 3 or more exacerbations during previous year

BODE Index

 7	•		

Points on BODE Index

	0	1	2	3
FEV1 (% predicted)	≥65	50-64	36-49	≤35
6-Minute Walk Test (meters)	≥350	250-349	150-249	≤149
MMRC Dyspnea Scale	0-1	2	3	4
Body Mass Index	>21	≤21		

Celli BR. N Engl J Med. 2004;350:1005

COPD predicted survival based on BODE Index

Celli BR. N Engl J Med. 2004;350:1005

Lung Volume Reduction

• Bronchoscopic or surgical

• Does not exclude patients from future transplantation

Idiopathic Pulmonary Fibrosis

Referral to transplant center

- Histologic or radiographic evidence of UIP or fibrotic NSIP
- FVC < 80% pred or DLCO < 40% pred
- 10% or greater decrease in FVC during 6 months of follow-up
- 15% or greater decrease in DLCO
- Desaturation < 88% during a 6MWT
- Pulm HTN on Right heart catheterization

Cystic Fibrosis

Referral to transplant center

- FEV1 < 30% predicted or a rapid decline in FEV1
- Increasing frequency of exacerbations
- Chronic Respiratory Failure
- 6MWT < 400 meters
- Development of pulmonary hypertension
- Recurrent hemoptysis not controlled by embolization

Recipient Criteria Special Issues

Cystic Fibrosis

- Pulmonary Infections
 - ➤Pan-resistant pseudomonas aeruginosa
 - ≻Burkholderia cepacia (esp. genomovar III)
 - ≻MRSA
 - ≻Mycobacterium abcessus
 - ≻Aspergillus sp
- GI/Hepatic Disease
- Narcotic dependence

Recipient Criteria Timing of Evaluation

PPH

- NYHA III or IV
- Failed epoprostenol therapy
- Hemodynamics: RAP > 15 Cl < 2.0

Mean PAP > 60

Where does it begin for the potential recipient?

Transplant Evaluation

- Referral to the Transplant Center
- Initial clinic visit:
 - Review of medical records
 - History and physical exam
 - Education about transplant
 - What do we do now?
 - Transplant evaluation?

Transplant Evaluation

- Evaluation Week
 - 4-5 full days of testing
 - Consultations with the entire team

Pre-transplant Evaluation

- PFTs
- 6 minute walk test
- EKG
- Echocardiogram
- Cardiac cath
- HRCT

- Chemistries
- LFTs
- Serologies- CMV, HIV, Hepatitis, EBV
- V/Q scan
- Dexa scan
- GERD

Selection Committee

- Entire Transplant Team Participates
 - All data reviewed
 - Decision:
 - List
 - Further work to do
 - Not a candidate
- Communication with Candidate

Getting ready for transplant takes time

- Cancer screening with up to date health maintenance
- Weight Loss
- Finances
- Pulmonary Rehabilitation
Deconditioning Spiral

Donor recipient matching

- ABO compatibility
- size matching
- absence of recipient preformed antibodies that react against the donor

Postoperative Care

Complications

Early Postoperative Management

Ventilator Management
Hemodynamic Stability
Immunosuppressive Regimen
Infectious Disease Prophylaxis

Postoperative Oxygenation and Ventilation

- Extubate as soon as possible
- Chest physiotherapy
- Minimize fluids +/- diuresis
- PEEP only in patients without COPD
 > In COPD, avoid native lung hyperinflation in those receiving a SLT by allowing maximal expiratory time

Reimplantation Response Treatment

- Support with Mechanical Ventilation (avoid barotrauma)
- Independent Lung Ventilation if a SLT
- Diurese
- Nitric Oxide
- ECMO

Reimplantation Response Histology

Immunosuppression

and

Rejection

Immunosuppression

- Preoperative
 - ➤ Tacrolimus
 - ≻ Mycophenolate mofetil
- Intraoperative
 - > Solumedrol 500mg
- Postoperative
 - > Tacrolimus 2 mg/24 hrs, then adjusted for trough blood levels
 - > Mycophenolate mofetil
 - Solumedrol 125 mg q12 hr x 3 doses, then 0.6 mg/kg, tapering eventually to 0.1 mg/kg

Cyclosporine (Neoral, Gengraf)

- Target trough levels = 200 400 ng/ml
- Primary toxicities
 - Renal
 - CNS
 - Gingival hyperplasiaHirsutism

Tacrolimus (Prograf)

- Target trough level = 7 to 15 ng/ml
- Primary toxicities
 - Renal
 - Diabetes
 - CNS
 - Type 4 RTA

Mycophenolate Mofetil (Cellcept)

- Mycophenolic acid target levels = 1-3 (I think)
- Primary toxicities
 - GI (diarrhea, N/V)
 - Leukopenia
 - Thrombocytopenia
 - ? Increase risk of viral diseases

Sirolimus / Everolimus

 Target trough levels (5 – 7 ng/ml) or combined level with tacrolimus of ~ 10

Primary toxicities

- Organizing Pneumonia
- Pleural effusions
- Hyperlipidemia. check lipids monthly
- Pancreatitis
- Renal

Acute lung rejection

- sudden deterioration over 6 to 8 hours
- malaise
- shortness of breath
- low grade fever
- hypoxemia
- CXR perihilar diffuse infiltrate

Diagnosis of acute rejection

- typical symptoms and signs
- CXR appearance
- response to increased immunosuppression
- BAL and transbronchial lung biopsy

Acute Rejection

Treatment

- Solumedrol 10mg/kg for 3 days
- > Refractory cases: thymoglubulin, TLI, photopheresis

Significance

- > Majority respond clinically to treatment
- > Majority do not regain lost lung function
- > Multiple early episodes predispose to chronic rejection

Bronchiolitis Obliterans Syndrome

Definition (=chronic rejection)

Inflammatory disorder of the small airways of unknown etiology leading to their obstruction and destruction and eventually progressing to impairment of the large airways

Bronchiolitis Obliterans Histology

Bronchiolitis Obliterans Syndrome

Classification

- > Stage 0 FEV1 > 80% baseline
- > Stage I FEV1= 66-80% baseline
- > Stage II FEV1= 51-65% baseline
- ≻ Stage III FEV1< 50% baseline

Chronic Allograft Dysfunction

Alloimmune dependent factors Non alloimmune

- 1. Acute cellular rejection
- 2. Lymphocytic bronchiolitis
- 3. Organizing pneumonia
- 4. HLA mismatches

- Infections
 GERD
- 3. Graft Vasculopathy
- 4. PGD and role in BOS

MHC Class I, II present peptides to T cells – CD4 and

sit

GER, aspiration, bile exposure

CLAD

PGD independent risk factor, insult leading to propagation of danger signals that activate APC via Toll-like receptor

> CMV infection increases epithelial expression of donor HLA in transplant recipients

The virus has also been found to

cells cause delayed hypersensitvi ty (complement and Ab)

Memory T

Chronic Allograft Dysfunction

Courtesy Dr. Stone, Henry Ford Pathology: Masson Trichrome

Treatment of CLAD

- Change in IS unlikely to benefit
- Antilymphocyte or anti-thymocyte treatments(ATGAM, thymoglobulin, CAMPATH)- limited benefit
- Azithromycin (only medication proved in trials to stabilize CLAD and pre treatment BAL neutrophilia predicts response)
- ECP: Photophoresis, expensive but no increased infection risk. Benefit in early BOS
- Fundoplication

rCLAD

- Restrictive rather than an obstructive pulmonary function defect (defined as a decline in total lung capacity of at least 10%)
- Demonstrate persistent interstitial and groundglass opacities on chest CT

Seminars in Respiratory and Critical Care Mediciine Vol 34, No.3, 2013

Antibody Mediated Rejection

• AMR, also known as humoral rejection, is described as the combination of four factors: (1)donor-specific anti-HLA anti- bodies (2) evidence of complement deposition in allograft biopsies (3) histologic tissue injury, and (4) clinical allograft dysfunction

Targeting B Cells and Antibody in Transplantation

American Journal of Transplantation Vol11, Issue7, pages 1359-1367

AMR

- We are still evolving in
 - its treatment
 - IVIG
 - Plasma exchange
 - Rituximab

Infections Following Lung Transplantation

Pathogenesis of Infections

- Immunosuppression
- Ischemic injury
- Interruption of lymphatic circulation
- Denervation of allograft

Infectious Disease Prophylaxis

Antibacterials perioperative
CMV / Herpes virus prophlaxis
Antifungal prophylaxis
PJP prophylaxis
Nebulized antimicrobials

Infectious Complications

\blacksquare Early (<14 days) ►Bacterial ≻Donor – ventilator bugs **≻**Recipient \succ depends on disease >Rx based on cultures ► Empiric MRSA/MDR Pseudomonas coverage ≻Atypical coverage (Ureaplasma sp./hyperammonemia) ≻Fungal : Aspergillus, Candida
Infectious Complications

Late (>14 days) > Bacterial – gram negative pneumonia > Fungal – Aspergillus > Viral – CMV, herpes

Definitions of CMV Infections

Syndrome/Viremia

- > Fever, leukopenia, diarrhea, N/V
- > Malaise
- > CMV antigen conversion, PCR detection, or isolation from blood cultures

Disease

- > Pneumonitis or extrapulmonary infection
- > Histopathologic evidence with compatible clinical syndrome

Airway Complications

Airway Anastomosis Stricture

Airway Anastomosis Stricture

Airway Stricture Balloon Dilatation

Airway Stricture Stent Placement

Future Challenges Expanding The Donor Pool

Is xenotransplant the (an) answer?
Should organ donation be legislated?
Should organ donors' families be paid?
Are we utilizing the current donor pool?