Basics of Sleep Medicine: From A to ZZZZZ's

Joyce K. Lee-lannotti, MD
Chief and Medical Director,
Sleep Disorders Center
BUMC-P

IM Sleep Lecture October 16, 2018

<u>Objectives</u>

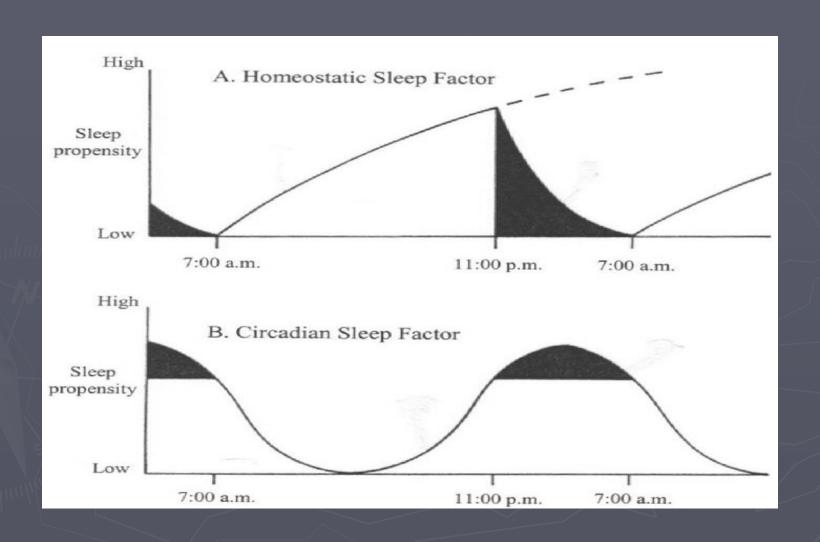
- ► Normal Sleep
- Physiology of sleep (just briefly)
- ► Sleep stages
- ▶ Introduction to the PSG
- Sleep Disorders
 - Insomnia
 - OSA

Basic Sleep Concepts

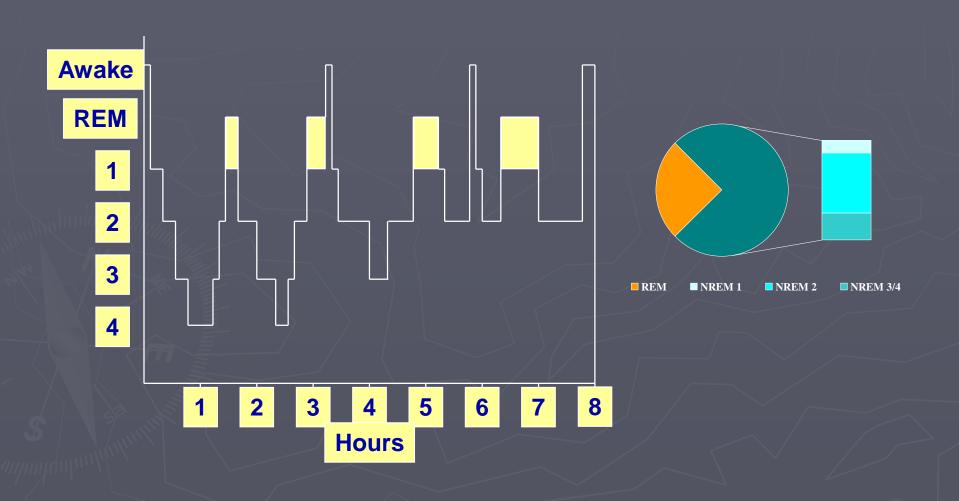
- Drive for sleep exceeds the drive for food and water, and freedom from pain
- Sleep deprivation, total or chronic partial, may have serious consequences
 - death in experimental animals
 - impaired perception and microsleeps in humans
- Sleep debt must eventually be repaid

Sleep-Wake Cycle Regulation

- Two related key processes promote sleepiness or mental arousal at different times
 - Homeostatic drive
 - Circadian rhythm
- Together, these determine when sleep can occur under both normal and abnormal circumstances

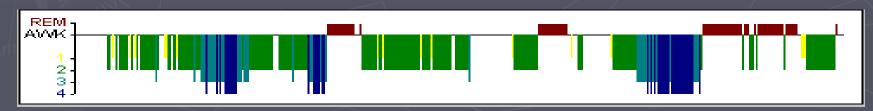

Homeostatic drive

- Has a ratio of approximately 1/3 sleep and 2/3 waking
- Sleep deprivation, acute or chronic, increases the homeostatic sleep drive and therefore sleepiness
- Hypothetically, the homeostatic sleep drive could be satisfied by sleep at any hour


Circadian rhythm

- Entrained and synchronized
- ► Timing of sleepiness promoted by the endogenous circadian clock
- ► Facilitates the rhythmic cycle of sleep at the same approximate nighttime hours (each day)
- Reinforced by the daily photoperiod, and possibly influenced by other light exposure

Sleep/Wake Cycle



Normal Sleep

Normal Sleep Architecture

- Approximately 90 minute cycle including NREM and REM
- Slow wave dominates first third of night
- REM sleep dominates last third of night (early morning hours)
- REM sleep: 20-25% total sleep time
 - Can see REM-rebound with sleep deprivation, abrupt withdrawal of REM suppressants

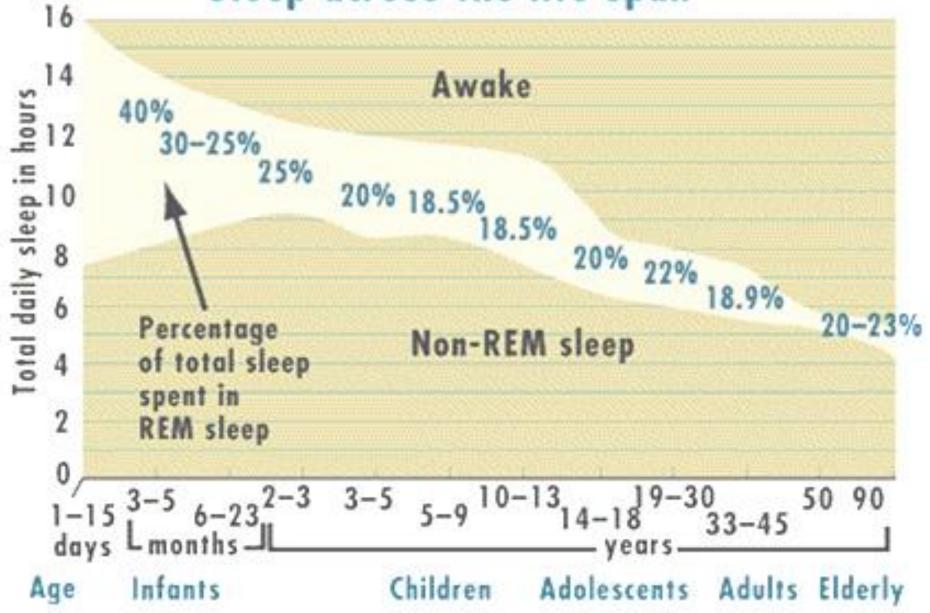


Table 9.1 Brain Structures for Arousal and Sleep

Structure	Neurotransmitter(s) It Releases	Effects on Behavior	
Pontomesencephalon	Acetylcholine, glutamate	Increases cortical arousal	
Locus coeruleus	Norepinephrine	Increases information storage during wakefulness; suppresses REM sleep	
Basal forebrain			
Excitatory cells	Acetylcholine	Excites thalamus and cortex; increases learning, attention; shifts sleep from NREM to REM	
Inhibitory cells	GABA	Inhibits thalamus and cortex	
Hypothalamus (parts)	Histamine	Increases arousal	
	Orexin	Maintains wakefulness	
Dorsal raphe and pons	Serotonin	Interrupts REM sleep	

© 2007 Thomson Higher Education

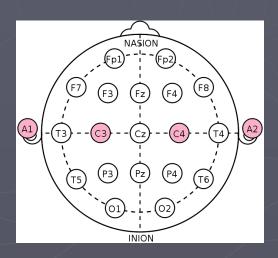
Introduction to the PSG

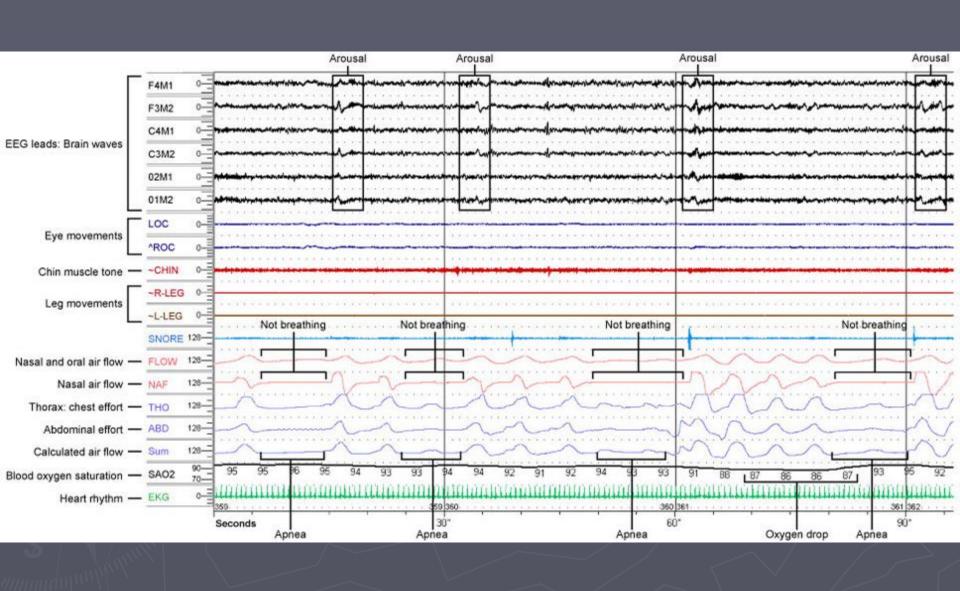
Types of sleep studies

- Diagnostic overnight study
 - In-lab (OSA, CSA, PLMD/RLS, RBD, parasomnias, seizure)
 - Home sleep study (just for OSA)
- PAP titration Once a patient is identified as having sleep apnea another study is performed in which the technician adjusts the CPAP level during the test/mask fitting [CPAP/Bilevel PAP +/- ST/ASV]
- Split Night Combines a diagnostic study and a CPAP titration study into one night. The patient is diagnosed during the first half of the night (AHI >30); CPAP applied the second half if required by protocol
- MSLT Multiple Sleep Latency Test
- MWT Maintenance of Wakefulness Test

Indications for PSG

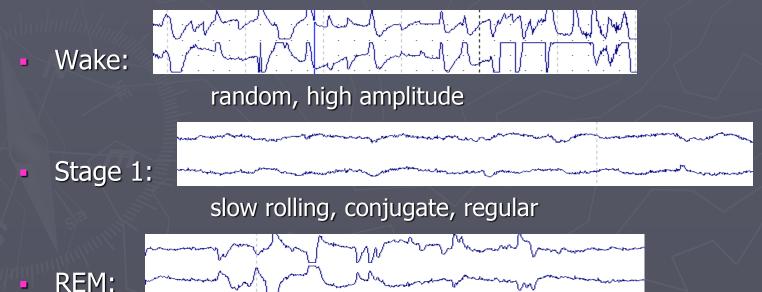
- Excessive daytime sleepiness (EDS)
- Unexplained behavioral events in sleep
- Insomnia or unexplained awakenings
- Sleep-related breathing disturbances
- ► Effect of treatment for sleep disorders


PSG Parameters


- **EEG**
- ► EOG (electrooculogram)
- ► Chin EMG
- ► Leg EMG
- **ECG**

- ► Airflow
- ► Effort
- Oxygen
- Body position

EEG


- Minimum of 3 EEG derivations required to sample from frontal, central and occipital regions
- Recommended derivations
 - F4-M1
 - C4-M1
 - O2-M1
 - F3, C3, O1 and M2 placed for backup
- Alternative derivations
 - Fz-Cz
 - Cz-Oz
 - C4-M1
 - Fpz, C3, O1 and M2 placed for backup
- Additional derivations required for evaluation of seizures
 - International 10-20 electrode placement (seizure protocol)
- Paper speed: 10 mm/sec (30 sec epochs)

EOG

- EOG records voltage changes caused by EM
- Recommended derivations:
 - E1-M2 (E1 placed 1 cm below LOC)
 - E2-M2 (E2 placed 1 cm above ROC)
- Alternative derivations:
 - E1-FPz (E1 placed 1 cm below/lateral to LOC)
 - E2-FPz (E2 placed 1 cm above/lateral to ROC)

conjugate, irregular, sharply peaked EM

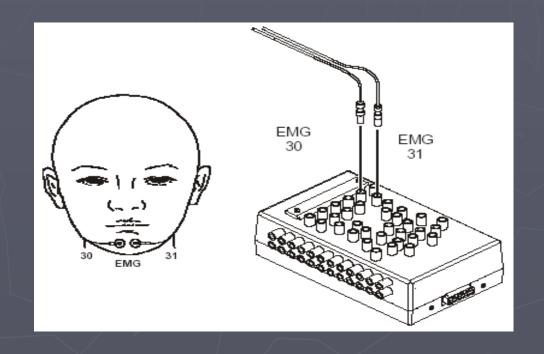
LOC (22)

ROC (23)

LOC (22)

EMG

- Recorded as the potential between two surface electrodes placed several centimeters apart
- Typically, the chin (submental) muscle is used because it exhibits large differences during sleep, aiding in the identification of stages
- Wake high activity

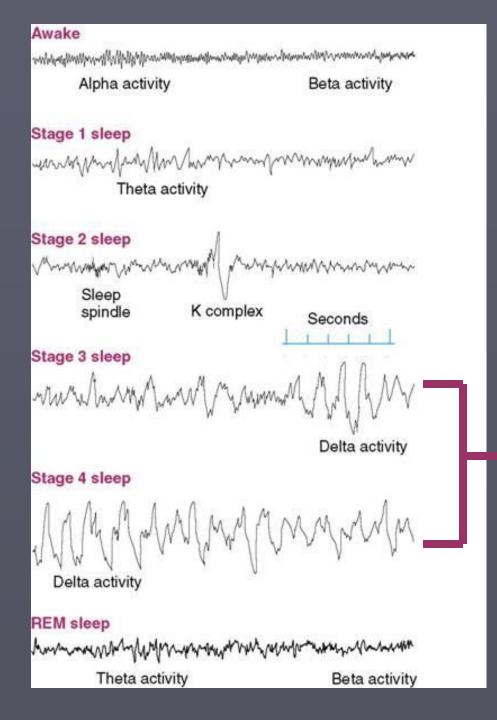

Sleep - lower activity

REM sleep - paralysis of skeletal muscles

EMG Placement

- Chin Electrode placement (2 required)
 - Midline 1 cm above inferior edge of mandible (optional)
 - 2 cm below inferior edge of mandible to right of midline
 - 2 cm below inferior edge of mandible to left of midline

REM vs. NREM Sleep


- Non-REM
 - Physical restoration
 - Driven by homeostatic drive
 - Quiet brain, active body
- ► REM
 - Mental restoration/memory
 - Driven by circadian rhythm
 - Active brain, quiet body

REM vs. NREM Sleep

Physiologic Variable	<u>NREM</u>	<u>REM</u>
Heart rate	Regular	Irregular
Respiratory rate	Regular	Irregular
Blood pressure	Regular	Variable
Skeletal muscle tone	Preserved	Absent
Brain 0 ₂ consumption	Reduced	Increased
Ventilatory response	Normal	Reduced
Temperature	Normal	Poikilothermic

Overview of sleep stages

Combined to become N3

2007 AASM scoring guidelines

Respiratory Variables

- Respiratory effort (thoracic and abdominal belts)
- Airflow (thermistor, thermocouple, nasal pressure)
- SpO2 (pulse oximetry)
- Snoring microphone
- Optional signals
 - ETCO2
 - tcCO2

Airflow methods

Qualitative

- Thermal sensors
 - Measure temperature changes
 - Breathe in cool air, breathe out warm air; measures the difference in temperature, but can underestimate
 - Measures apneas
- CO2 monitors
 - End tidal CO2 monitor, Transcutaneous
- Nasal pressure
 - More sensitive, detects hypopneas

Quantitative

- Pneumotachography
 - Gold standard
 - Place a face mask over pt's face and measure tidal volume, uncomfortable so not commonly used

Effort methods

- Qualitative
 - Piezo-electric belts (crystals embedded in belt that sense movement)
 - Intercostal EMG
- Semi-quantitative
 - Respiratory inductive plethysmography (RIP): can give tidal volume, but not very accurately
- Gold standard: Esophageal pressure (balloon inserted into lower esophagus)

Other Variables Typically Recorded

- ECG
- Leg movement: EMG
- Video
- Body position

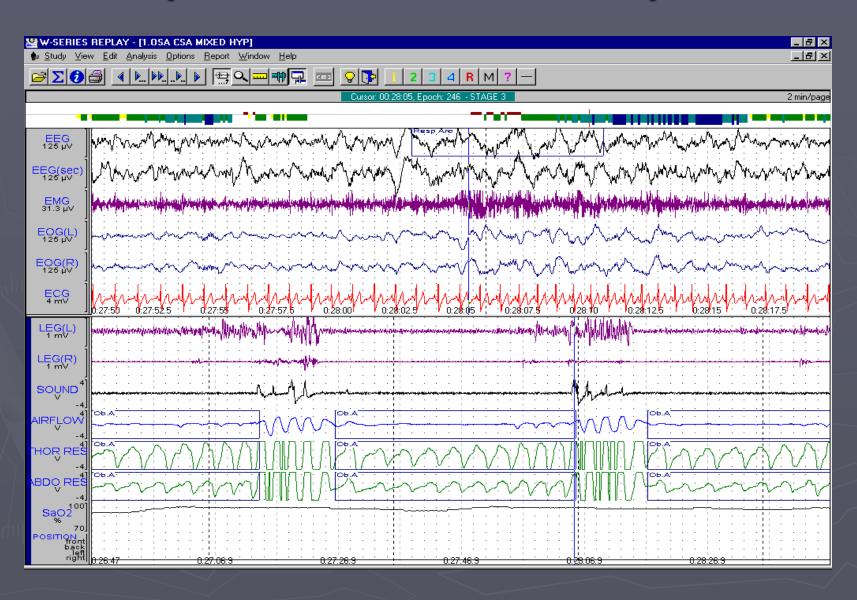
Respiratory Events

- Apneas absence of airflow
 - Drop in peak thermal sensor excursion by >90% of baseline
 - Duration of events lasts at least 10 seconds
 - At least 90% of event's duration meets the amplitude reduction criteria for apnea
- Hypopneas reduced airflow
 - Nasal pressure excursions drop by at least 30% from baseline
 - Duration at least 10 seconds
 - There is a ≥3% desaturation or an arousal (4% for Medicare)

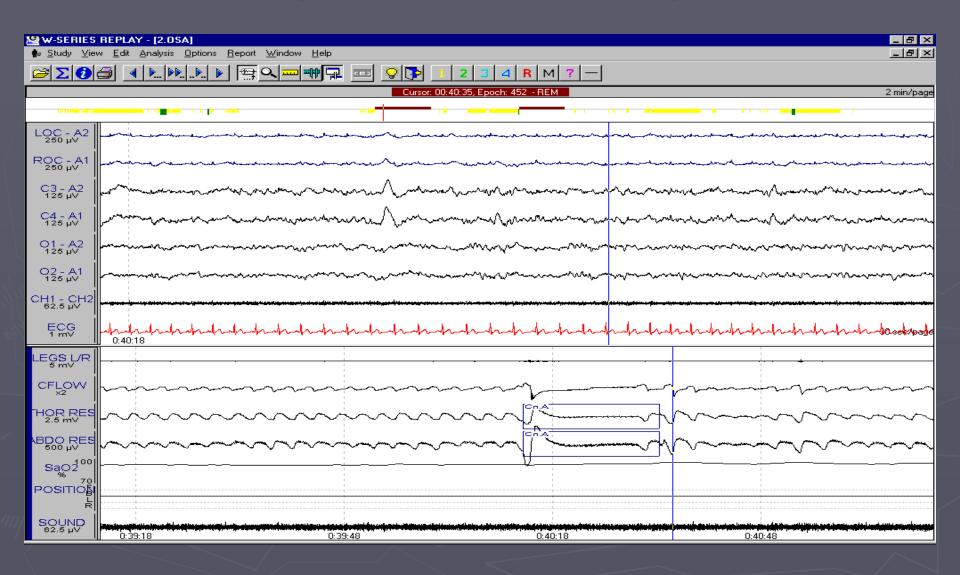
Types of Apnea

Obstructive:

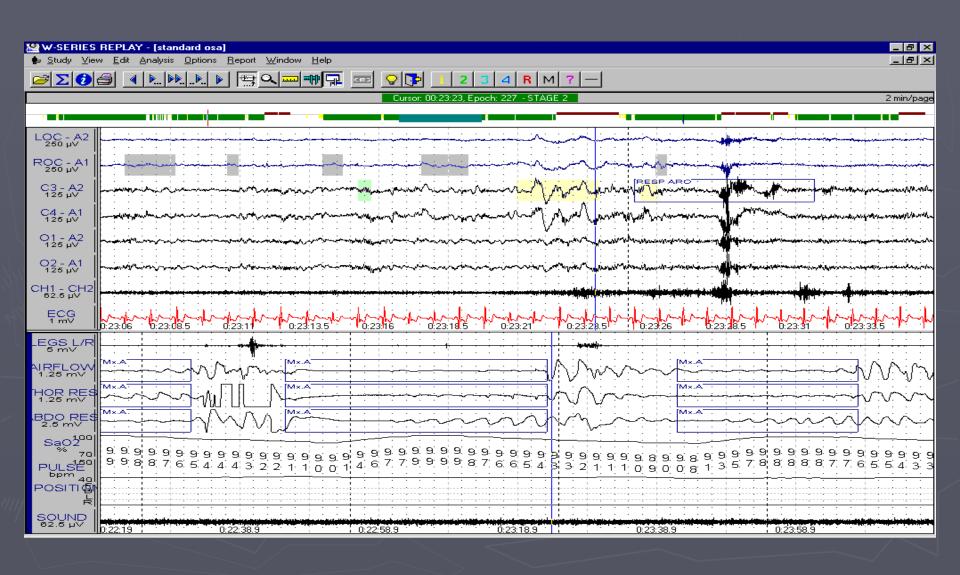
Associated with continued or increased inspiratory effort, but absent airflow

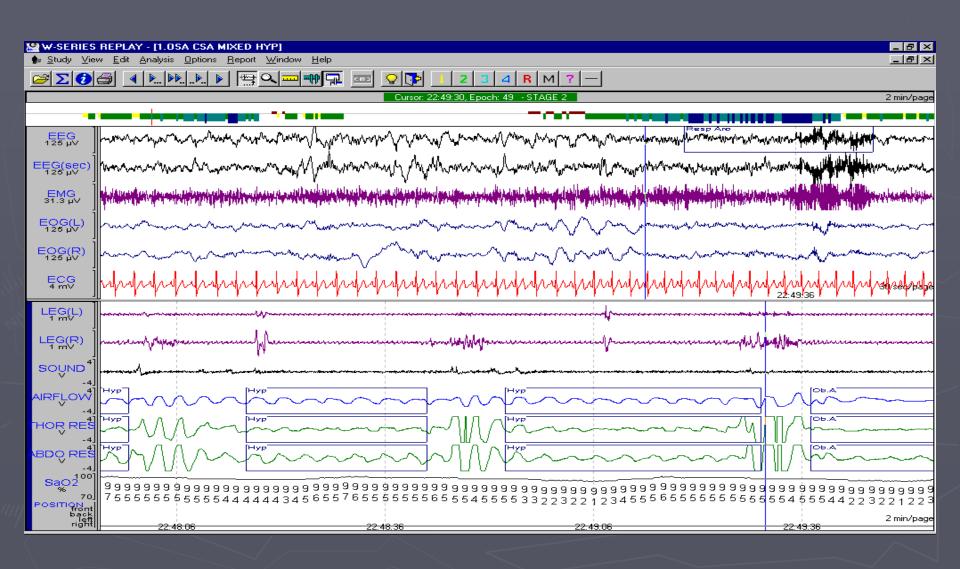

Central:

Absent inspiratory effort and airflow


Mixed:

 Absent inspiratory effort initially, followed by resumption of effort in the second portion of the event


Example - Obstructive Apnea


Example - Central Apnea

Example - Mixed Apnea

Example - Hypopnea

Common Sleep disorders: An overview via Cases

ICSD-3 (2014)

Sleep Disorders (ICSD3)

Parasomnias

NREM-related parasomnias

REM-related parasomnias

Confusional arousals

Sleepwalking

Sleep Terrors

Sleep Related Eating Disorders

Insomnia

Sleep related breathing disorders Central Disorders of hypersomnolence Circadian rhythm sleep-wake disorders Sleep related movement disorders Other Sleep Disorders

Other parasomnias

Isolated symptoms and normal variants

Case 1

- 69 yo F, travel agent presents with insomnia x
 15+ years
- PMH: hypothyroidism, OA, MVP, irritable bowel syndrome, migraines headaches
- Rx: levothyroxine, sumatriptan
- Currently rx'd temazepam 30 mg qhs for insomnia but c/o morning grogginess
- Other tried rx:
 - ▶ lorazepam 1-2 mg, diazepam 2 mg initially worked, lost effectiveness
 - zolpidem 10-20 mg nocturnal eating, sleep walking
 - ➤ Trazodone, imipramine, paroxetine, seroquel "like a zombie"

Case 1

- Sleep routine
 - ▶ BT: 22:30 (admits to reading but in lounge chair next to bed)
 - ► SL: 45-60 min
 - ► Awakenings: 1-3 x with variable SL after each (10-60 min), admits to rumination (stressors: finances, parents)
 - ► WT: 7 AM
 - ► Estimated TST: 5-6 hours (desires 7 hours)
- No symptoms to suggest OSA, RLS/PLMD, parasomnias, REM behavior disorder
- No psychiatric co-morbidities but family label her a "worry-wart"
- No drug or excessive caffeine/ETOH use, nonsmoker

Case 1

- Exam
 - ▶ BMI 23.5
 - ▶ BP 126/78, pulse 72, RR 13, O2 sat 97% RA
 - ► Friedman tongue position 1 (Mallampati 1), no nasal obstruction
 - Rest of exam nl (cardio/lungs/neuro/affect/etc)
- Questionnaires
 - ▶ Epworth sleepiness score: 6
- Lab work: TSH, CBC, Vit D, B12, Fe all wnl
- PSG 1 year ago, showed no OSA
 - ► Sleep latency 66 min, TST 246 min, SE 73%, no N3 sleep, 15% REM

Differential Diagnosis?

Case 1

CHRONIC INSOMNIA

- ► Sleep onset and sleep maintenance
- ▶ Treatment:
 - Both behavioral + pharmacological treatments are reasonable
 - Behavioral:
 - ► Sleep restriction in bed
 - Delaying bedtime until sleepy
 - Stimulus control (getting out of bed when unable to sleep)
 - Regular BT/WT (even on weekends)
 - Pharmacological:
 - ▶ Benzodiazepines can be used for <3months (with co-morbid anxiety) but recommended as short-term therapy; >6 months → develop tolerance and dependence
 - ▶ Other anxiolytics with SE of sedation: TCA's
 - GBP (concomitant tx for migraines/OA pain), "Vitamin G"
 - Other sedative-hypnotics (next slide)

Prescription Sedative-Hypnotics

Drug	<u>Duration</u>	Onset of action	Hypnotic dose	Half life
Zaleplon (Sonata)	Short	15-30 min	10-20 mg	1 hr
Zolpidem (Ambien)	Short	30 min	5-10 mg	2.5 hrs
Ramelteon (Rozerem)	Short	30-45 min	8mg	1-2.6 hours
Triazolam (Halcion)	Short	15-30 min	0.125-0.25 mg	2.9 hrs
Suvorexant(Belsomnra)	Intermediate	30-60 min	10-20 mg	12 hours
Eszopiclone (Lunesta)	Intermediate	30 min	1-3 mg	6 hours
Oxazepam (Serax)	Intermediate	45-60 min	15-30 mg	8.0 hrs
Estazolam	Intermediate	15-60 min	1-2 mg	10-24 hrs
Lorazepam (Ativan)	Intermediate	30-60 min	1-2 mg	14 hrs
Temazepam (Restoril)	Intermediate	45-60 min	15-30 mg	11 hrs
Clonazepam (Klonopin)	Long	30-60 min	0.5 mg-1 mg	23 hrs
Diazepam (Valium)	Long	15-30 min	5-10 mg	43 hrs*
Flurazepam (Dalmane)	Long	30-60 min	15-30 mg	74 hrs*

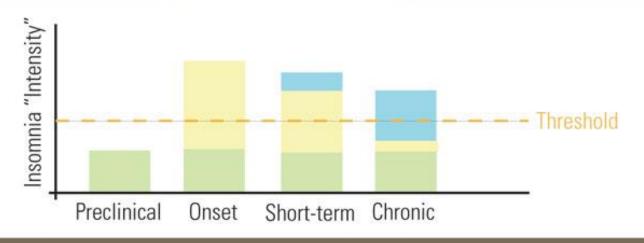
Insomnia

- 2012 Sleep In America Poll by NSF 58% of American Adults experience insomnia a few nights a week or more
- Insomnia definition: sleep latency >30 min + dysfunction
- ICSD-3 recognizes 3 types:
 - Short-term "adjustment" or "transient", <3 mos</p>
 - Chronic at least 3x/week for >3 mos
 - Other catch-all group
- ▶ 3 patterns
 - Sleep Onset Insomnia
 - Sleep Maintenance Insomnia
 - Terminal Insomnia (Early Morning Awakening)

Spielman's model for insomnia

FIGURE A MODEL OF CHRONIC INSOMNIA²⁻⁴

Predisposing Factors


- Biologic traits
- Psychological traits
- Social factors

Precipitating Factors

- Medical illness
- Psychiatric illness
- Stressful life events

Perpetuating Factors

- · Excessive time in bed
- Napping
- Conditioning

Erman MK. Primary Psychiatry. Vol 14, No 7. 2007.

Treatment of Insomnia

Depends on the Stage of Insomnia

- ► Treatment of Pre-Morbid Conditions
 - Sleep Hygiene
- Treatment of Precipitating Conditions
 - Psychiatric Counseling
- Treatment of Perpetuating Conditions
 - Cognitive Behavioral Therapy
 - ► Relaxation Techniques
 - Breathing Techniques
 - Medications ok but SHORT TERM ONLY

Good sleep hygiene tips

Sleep Hygiene Do's and Don'ts

🛍 Do:

- Establish a regular bedtime and rise time
- Exercise in the late afternoon or early evening
- Take a hot bath a couple of hours before bedtime
- Establish a comfortable sleep environment (e.g., bed, and bedding)
- Sleep in a dark, guiet area that is temperature and humidity controlled
- Establish a relaxing pre-sleep routine that you use every night before sleep, such as washing your face, getting into pajamas, reading or listening to soft music before turning the lights out.

Don't:

- Take daytime naps
- Use stimulants such as caffeine and nicotine
- Drink alcohol before bedtime
- Go to bed too hungry or too full
- Eat offensive foods, such as spicy or acidic foods (e.g., orange juice) before bed
- Try too hard to fall asleep
- "Watch the clock"
- Take prescription and over-thecounter medications that might be stimulating (check with your doctor)

Insomnia inducing Rx

Table 2. Medications	and Substances That May Contribute to Insomnia		
Analgesics	Opioids, NSAIDs		
Antidepressants	SSRIs, venlafaxine, duloxetine, MAOIs		
Stimulants	Caffeine, methylphenidate, amphetamines, cocaine		
Decongestants	Phenylephrine, pseudoephedrine		
Cardiovascular	β-blockers, diuretics		
Pulmonary	Albuterol, theophylline		

MAOI, monoamine oxidase inhibitor; NSAID, nonsteroidal anti-inflammatory drug; SSRI, selective serotonin reuptake inhibitor
Based on references 2, 7, 8, and 10.

Table 1. Sleep Disorder Differential D	liagnosis of Insomnia	
Disease	Characteristics	Notes
Sleep-related breathing disorders		
The obstructive sleep apnea syndrome	Upper airway obstruction during inspiration in sleep.	History of snoring, witnessed pauses in respiration, and daytime sleepiness. Patients may report non- restful sleep or insomnia. Polysomnography
		is necessary for diagnosis.
The central sleep apnea syndrome	Repetitive pauses in breathing during sleep without upper airway occlusion.	History of congestive heart failure or central nervous system disease. Polysomnography is necessary for diagnosis.
Sleep–related movement disorders		
The restless legs syndrome	Uncomfortable or restless feeling in legs most prominent at night and at rest; alleviated by movement.	Occurs in up to 10% of the general population. Approximately 80% of patients with this syndrome also have periodic leg movement disorder on polysomnography, although polysomnography is not necessary for diagnosis.
Periodic limb movement disorder	Repetitive stereotypic leg movement in sleep and during quiet wakefulness.	Strongly associated with the restless legs syndrome. Polysomnography is necessary for diagnosis.
Nocturnal leg cramps	Pain in calf or foot resulting in awakening from sleep.	Painful cramp awaken the patient from sleep. Predisposing factors include diabetes, exercise, pregnancy, and metabolic and endocrine abnormalities.
Circadian rhythm sleep-wake disorders		
Time zone change syndrome (jet lag)	Travel leads to reports of poor sleep, daytime sleepiness, or both.	History of recent travel across multiple time zones.
Shiftwork sleep disorder	Insomnia as a consequence of shiftwork. Sleep occurs at times counter to normal circadian rhythm and social and environ-mental factors.	History of insomnia associated with shiftwork; this disorder also affects persons who permanently work the night shift.
The delayed sleep-phase syndrome	Delay of the major sleep phase relative to clock time.	History of sleep-onset insomnia and difficulty awakening at the desired time. Patients have no difficulty maintaining sleep once asleep. Sleep log and actigraphy can aid diagnosis.
The advanced sleep-phase syndrome	The major sleep phase is advanced relative to clock time.	Inability to stay awake until desired bedtime and early-morning awakening. Occurs most commonly in elderly. Sleep log and actigraphy can aid diagnosis.
Parasomnias related to non-rapid eye movement	Include confusional arousals, sleepwalking, sleep terrors, and sleep-related eating disorders.	Disorders of arousal that may be a cause of disrupted sleep. Sleep history and input from bed partner or family may aid in identification.

ICSD-3 (2014)

Sleep Disorders (ICSD3)

Parasomnias

NREM-related parasomnias

REM-related parasomnias

Confusional arousals

Sleepwalking

Sleep Terrors

Sleep Related Eating Disorders

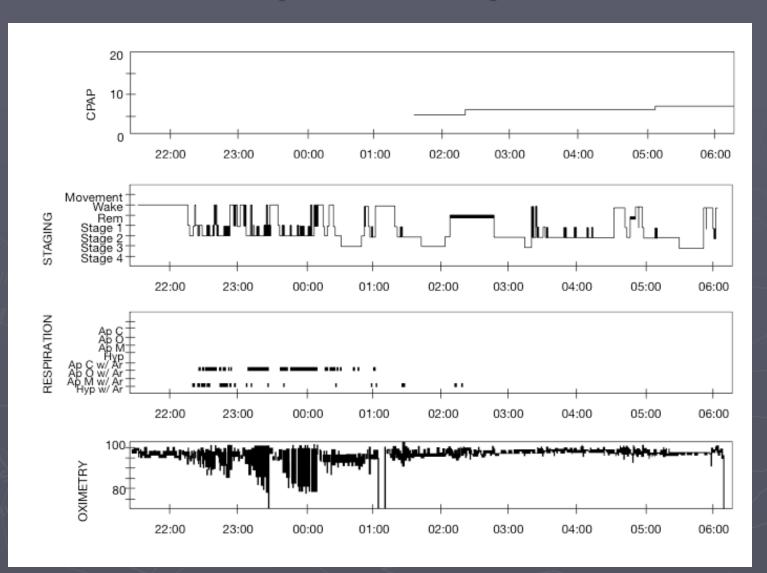
Insomnia

Sleep related breathing disorders Central Disorders of hypersomnolence Circadian rhythm sleep-wake disorders Sleep related movement disorders Other Sleep Disorders

Other parasomnias

Isolated symptoms and normal variants

Case 2


- 73 yo RH German man
- PMH: HTN, HPL, CAD, CHF (EF 30%), Vfib s/p ICD, paroxysmal AF
- Recent left MCA stroke secondary to AFrelated cardiac emboli with residual right HP and expressive aphasia

Case 2

 Noted to have abnormal overnight oximetry while in stroke rehab

Evidence of periodic desaturations in sawtooth pattern with lowest O2 saturation of 82%, a pattern suggestive of sleep apnea.

Split study

Case 2

- Pt used CPAP 8 cm H2O
- No stroke recurrence
 - Patient symptomatically improved, able to cooperate with rehabilitation
 - NIHSS 12→5
- Downloaded data showed good compliance (88%) and efficacy (AHI 45→3)

Sleep Related Breathing Disorders

- Obstructive Sleep Apnea
 - Most common cause of EDS and sleep disruption
- Central Sleep Apnea
- Hypoventilation Syndromes

What is OSA?

"... characterized by repetitive episodes of upper airway obstruction that occur during sleep, usually associated with a reduction in blood oxygen saturation..." with associated features of daytime sleepiness and snoring.

What is OSA Syndrome?

- Apnea Hypopnea Index (AHI) ≥5
 events/hour in conjunction with symptoms
- What is a relevant AHI?
 - Consensus Statement 1999: "RDI of 5 (or greater) accompanied by symptoms..."

Loube et al, Chest 1999

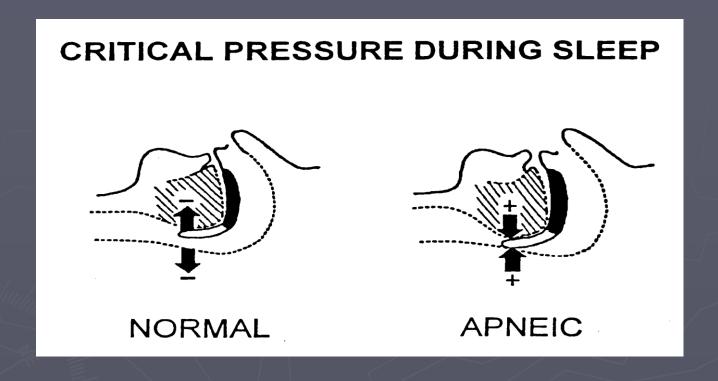
 Medicare 2014: AHI ≥ 5 with symptoms, or HTN, CAD or CVA

AHI grading

Measures of Sleep Apnea Frequency

- **∀** Apnea Index
 - -# apneas per hour of sleep
- ✓ Apnea / Hypopnea Index (AHI)
 - -# apneas + hypopneas per hour of sleep

Chart 2. Classification of the severity level of OSAHS according to the American Academy of Sleeping Medicine -1997.


APNEA/HYPOPNEA INDEX	LEVEL
<5	NORMAL
5-15	MILD
15-30	MODERATE
>30	SEVERE

Prevalence of OSA

- Wisconsin Sleep Cohort Study
 - Population based study: 602 working subjects, aged 30-60 years studied with PSG
 - Definition OSAS: AHI ≥5 and hypersomnolence

	F	M
OSA	9%	24%
OSAS	2%	4%

Pathophysiology of OSA

- Narrowing or collapse of the upper airway
- Decreased tidal volume → hypercapnia and hypoxia
- Increased respiratory effort
- Arousal opens airway
- Ensuing hyperpnea with hypocapnia and adequate oxygenation

Demographics of OSAS

- In younger, but not middle aged groups,
 OSAS has been reported to be more prevalent in AA's compared to Caucasians
- Despite lower BMI, Asians have a predisposition of OSA thought to be due to cranio-facial features
- Prevalence of OSA increases with age

Risk Factors for OSA

 Sleep Heart Health Study: male, age, BMI, neck girth, snoring, and witnessed apnea predict AHI >15

Young et al. Arch IM.2002

- Craniofacial abnormalities nasal obstruction, enlarged uvula/tongue/tonsils, long soft palate, retrognathia, micrognathia, brachycephaly (flat posterior head)
- Family History (increases risk of OSAS 2-4 fold)
- Co-morbid illness
 - cardiopulmonary disease (CHF, OHV)
 - metabolic disorders (hypothyroidism, acromegaly)
 - neurologic disorders (CVA, neuromuscular disorders e.g. MD)
 - Down's syndrome (macroglossia)
- Environmental Factors tobacco use, ETOH, sedatives

Symptoms/Signs of OSA

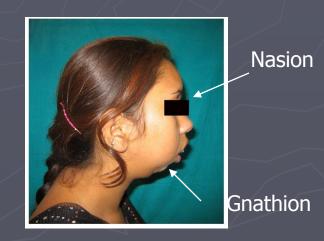
- Snoring
- Witnessed apneas
- Daytime sleepiness
- Sleep fragmentation
- Night sweats
- Nocturia
- Dry mouth/sore throat
- Leg kicking while sleeping
- Morning headaches
- Mood changes
- Decreased libido
- Memory problems

- Obesity
- Associated diseases
 - Hypertension
 - Cardiac disease
 - Stroke
 - Glucose intolerance
 - Hypothyroidism
 - Acromegaly

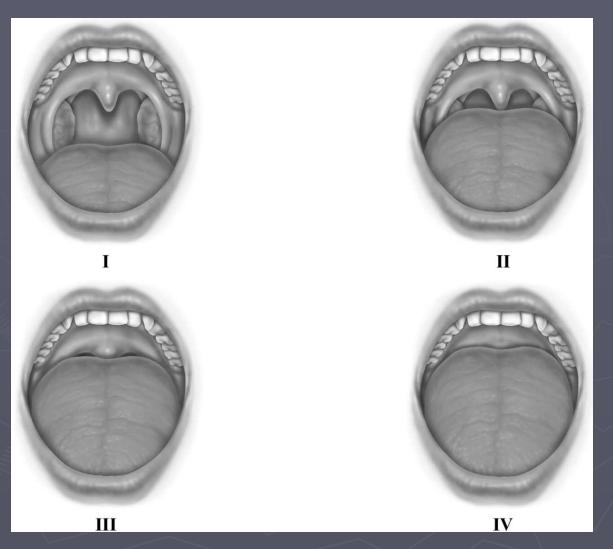
STOP-BANG Questionnaire

TABLE 2. STOP-BANG Questionnaire for identifying patients with obstructive sleep apnea (OSA)				
SNORE	Do you snore loudly? (Snoring can be heard through closed door)			
TIRED	Do you feel tired, sleepy, fatigued, during daytime?			
OBSERVED	Has anyone seen you stop breathing during sleep?			
BLOOD PRESSURE	Do you have or are you being treated for high blood pressure?			
вмі	Is your BMI > 35kg/m2?			
AGE	Are you older than 50?			
NECK CIRCUMFERENCE	Is your neck circumference greater than 40 cm?			
GENDER	Are you a male?			

If the answer to three or more of these questions is "yes," a presumptive diagnosis of OSA can be made.

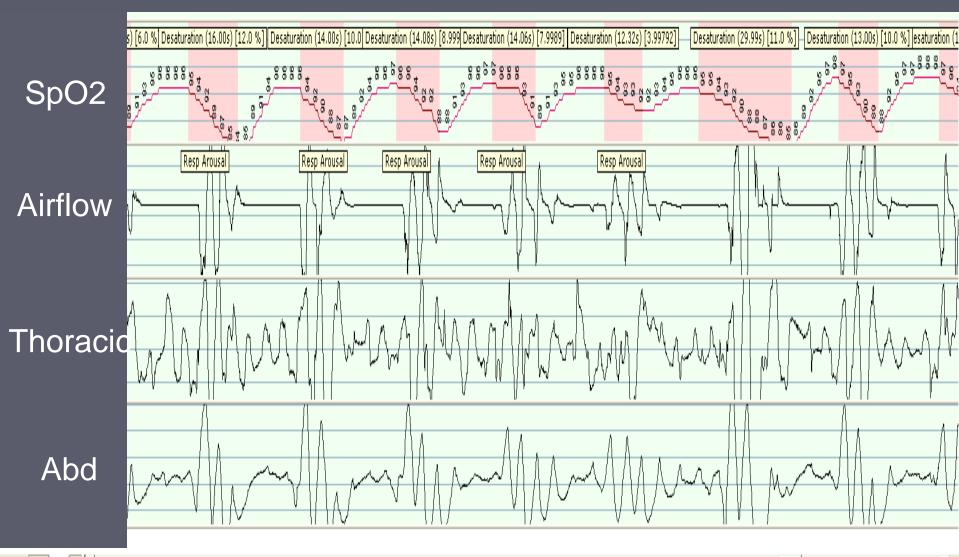

Modified from: Chung F, Elsaid H. Screening for obstructive sleep apnea before surgery: why is it important? Current Op Anaesthesiol. 2009;22: 405-411.

Clinical Examination

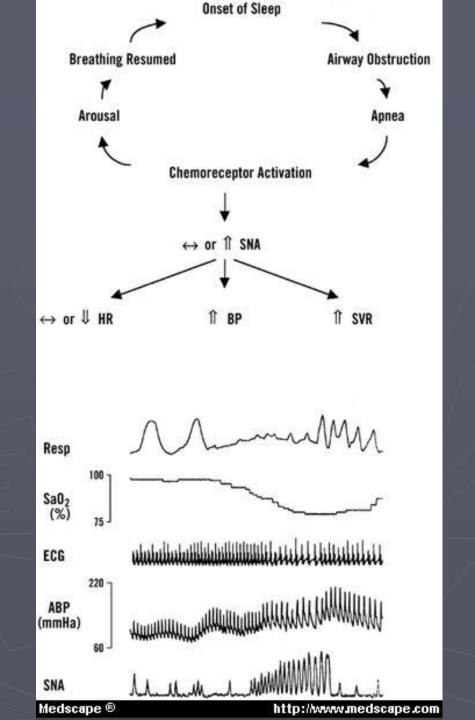

- Vital signs (hypertensive, arrhythmias)
- Obese (BMI >30)
 - 40% of those with BMI >40 have OSAS and 50% of those with BMI >50 have OSAS

Kripke et al. Sleep 1997.

- Neck circumference
 - ≥40 cm associated with sensitivity of 61% and specificity of 93% for OSAS
 - Men >17 inches, women >16 inches
- Oral airway
 - Retrognathia (narrows the upper airway behind the base of the tongue)
 - Dental malocclusion and overlapping teeth (indicated small oral cavity)
 - Macroglossia
 - Edema and erythema of the uvula
 - Elongated soft palate
 - Narrow high arched palate
 - Tonsillar hypertrophy
 - Lateral airway narrowing
- Nasal airway
 - Nasal valve collapse with sniff test
 - Nare size and asymmetry
 - Septal deviation
 - Enlarged inferior turbinates



Friedman tongue position (FTP) is based on visualization of structures with the mouth opened widely without protruding the tongue.



Friedman M et al. Otolaryngology -- Head and Neck Surgery 2006;134:187-196

OSA – Example of a PSG

Consequences of OSA

- Coronary artery disease
- Heart failure

AR

- Stroke
- Sleep Heart Health Study: cross-sectional association between OSA and selfreported CVD:

<u>CAD</u> <u>CHF</u> <u>CVA</u> 1.27 2.38 1.58

Shahar et al, AJRCCM 2001

OSA related to stroke and death

- Conducted at Yale Medical Center
- 1022 participants enrolled but only 898 completed
 - 573 (68%) with OSA (AHI >5, mean AHI 35±29)
 - 325 w/o OSA (AHI<5, mean AHI 2 \pm 1.5)
- Mean age 60 yrs
- Follow up of 2-4yrs
- Adjusted for age/sex/race, smoking, alcohol intake, BMI, DM, HTN, AF, high cholesterol

Results

- OSA group 22 strokes, 50 deaths
 [3.48 events per 100 person-years]
- Control group 2 strokes, 16 deaths
 [1.60 events per 100 person-years]
- After adjustment for age, sex, race, tobacco use, ETOH, BMI, DM, HTN, AF, HPL, OSA retained a statistically significant association with stroke or death

[Hazard ratio 1.97; 95% CI 1.12-3.48, P=0.01]

Table 3. Trend Analysis	for the Relationship	between Increased S	everity of the (Obstructive Sleep	Apnea Syndrome
and the Composite Ou					

Severity of Syndrome	Stroke	or Death	Mean Follow-up Period	Hazard Ratio (95% CI)
	No. of Events	No. of Patients		
			yr	
AHI ≤3 (reference score)	13	271	3.08	1.00
AHI 4-12	21	258	3.06	1.75 (0.88-3.49)
AHI 13-36	20	243	3.09	1.74 (0.87–3.51)
AHI >36	34	250	2.78	3.30 (1.74–6.26)

- Trend analysis showed a step-wise increase in the risk of stroke/death as a function of increased severity of OSA (p=0.005)
- The risk of stroke/death in pts in the most severe quartile of OSA was 3 x that in the controls

Other Consequences of OSA

- Pulmonary HTN
- Cor Pulmonale
- Cardiac Arrhythmias (atrial fibrillation)
- GERD
- Increased frequency of seizures in epileptics
- Increased headache syndromes (migraines)

Consequences of OSA

- Psychiatric/mood depression, anxiety, irritability
- Social and sexual dysfunction
- Neurocognitive impairment general intellectual ability, learning and memory, attention, information processing efficiency, visual and psychomotor performance

Consequences of OSA

 Increased traffic accidents - case-controlled study found those with AHI > 10 had OR of 6.3 for MVA

Teran-Santos et al, NEJM 1999

- Increased utilization of Health Care Services
- Increased mortality relative risk 2.7-3.3
- All of these adverse outcomes can be improved by treatment

Treatment of OSA: Conservative Measures

Weight loss

- 10% weight loss leads to 26-50% decrease in AHI
- pharyngeal function improves as weight decreases
- extensive weight loss (i.e. following gastric bypass surgery) may resolve OSA
- almost always should be combined with other therapies

Treatment of OSA: Conservative Measures

- Lateral positioning
- Elevating the head of the bed
- Avoiding upper airway irritants tobacco
- Minimizing sedating agents alcohol, sedatives

Treatment of OSA: CPAP

- First-line therapy for OSA
- Can eliminate sleep disordered breathing in most patients
- Produces a "pressurized" upper airway to maintain airway patency
- PAP titration study vs autoPAP

Treatment of OSA: CPAP

Benefits

- decreases sleep-disordered breathing and EDS
- improves oxygenation, exercise function
- improves neuropsychiatric measures
- decreases MVAs and hospitalizations
- appears to decrease mortality

Problems

- acceptance suboptimal
- compliance poor at times but can overcome

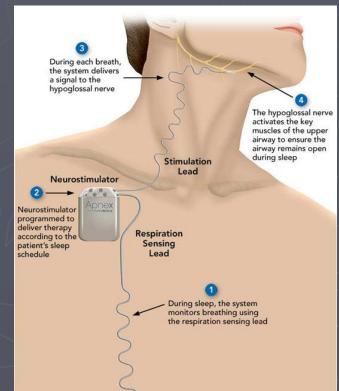
Alternative treatment for OSA: Oral Appliances

- Relatively new therapy for OSA
- Two categories:

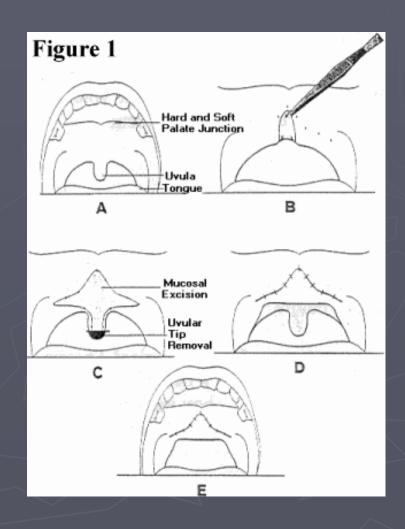
 Mandibular Advancing Devices
 Tongue Retaining Devices
- Work by enlarging the pharyngeal crosssectional area
- Consider in patients with mild/moderate OSA
- RCT suggest about equal efficacy to CPAP with better tolerance

Alternative treatment of OSA

Provent nasal strips



Positional therapy



 Hypoglossal nerve stimulator

Treatment of OSA: Surgery

- Numerous approaches have been tried
- Surgical data limited
- Procedures in general use:
 - Nasal surgery
 - Tonsillectomy +/adenoidectomy
 - UPPP
 - Genioglossus advancement
 - Maxillomandibular Advancement (MMA)
 - Tracheotomy

Treatment of OSA: Pharmacotherapy

Little successes at this point in time

 "Some" efficacy may be present in the following situations:

<u>Condition</u> <u>Medication</u>

OHV Medroxyprogesterone

REM OSA SSRIs, TCAs

CHF Theophylline

BUMC-P Sleep

- Clinic –Advanced Lung Institute
- Sleep lab West tower, 1st floor
- We see everything insomnia, OSA, CSA, narcolepsy, RBD, nocturnal epilepsy, etc
- Office number: 602-351-3400
- 2 physicians, RRT, RPSGT (5)
 - Najma Usmani, MD (sleep pulmonologist)
 - Stacy Thacker, RRT
- Cyrus Guevarra (neurodiagnostics sr mgr)
- Email me: joyce.lee-iannotti@bannerhealth.com

Summary

- Sleep Medicine is a relatively new field
- Normal Sleep is dictated by homeostatic pressure and circadian rhythms
- PSG is the gold standard for diagnosis of most sleep disorders
- Insomnia is the most common sleep disorder, but OSA is the most common cause of EDS

Sleep is cool, dude~
We welcome
rotators all the
time ©
Sleep Medicine
Fellowship
debuting 2019

QUESTIONS??

"It was the most dynamic presentation I ever gave. One person stayed awake for almost seven minutes!"