## **Pleural Disease**

Sarika Savajiyani DO Pulmonary & Critical Care Fellow Academic Half Day October 15th, 2019

### Objectives

1. Describe the symptoms and physical exam findings of a pleural effusion.

2. Describe the indications for thoracentesis.

 Describe the appropriate tests to order to evaluate pleural fluid according to Light's criteria,
2-test and 3-test rule. Know how to determine if the fluid is transudative or exudative.

4. Describe the differential for transudative effusions and describe the evaluation that can help determine when a transudative effusion is falsely exudative (especially after diuretics have been given.)

5. Describe the differential for exudative effusions. Know the indications for chest tube drainage of exudative pleural effusions.

#### Case

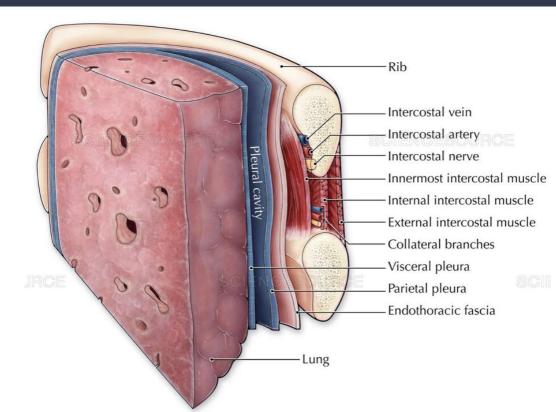
A 67 year old man presents to the emergency department with a 5-day history of fever and cough that is productive of green phlegm.

He has a history of tobacco use and ischemic cardiomyopathy with an LVEF of 25%.

He is admitted with a presumptive diagnosis of pneumonia and is started on antibiotics.

A CXR is obtained and shows a left-sided infiltrate and moderate-size effusion.




### Question 1

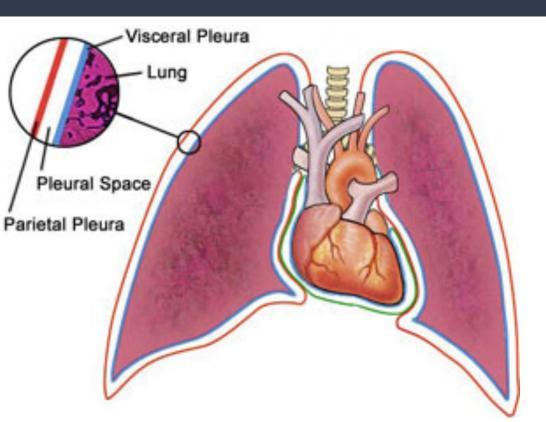
# B. The effusion is a new finding and its etiology is unknown

Why should a diagnostic thoracentesis be performed on this patient?

- a) This patient's effusion is likely related to his congestive heart failure (CHF)
- b) The effusion is a new finding and its etiology is unknown
- c) Thoracentesis should be performed on all pleural effusion
- d) This patient's effusion is malignant given his smoking history

### **Pleural Anatomy**




- Visceral Pleura:
  - Envelops the lung
  - Mesothelial cells
  - Blood supply: bronchial arteries
  - Lymphatics: pulmonary parenchyma
  - No nerve fibers
  - Venous drainage: pulmonary vein

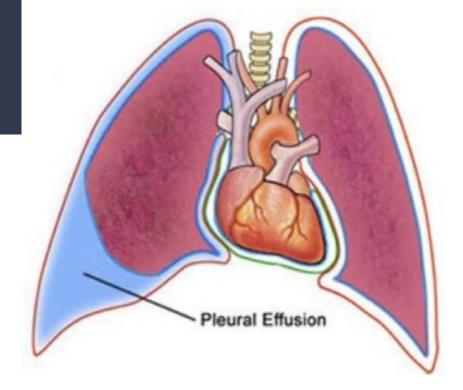
#### Parietal Pleura:

- Inner surface of chest wall
- Blood supply: intercostal arteries
- Lymphatics: thoracic duct
- Pain fibers (intercostal nerves)
- Venous drainage: SVC
- Pleural fluid absorption : 1L daily fluid flux

## Pleural Anatomy

- Potential space (relative vacuum)
- Role in respiration
- Lubricant
- 5-10 cc normal pleural fluid
  - $\circ$  Clear
  - Low protein
  - 60-70% monocytes and macrophages
  - o pH >7.60
  - Glucose = plasma




## Pathophysiology

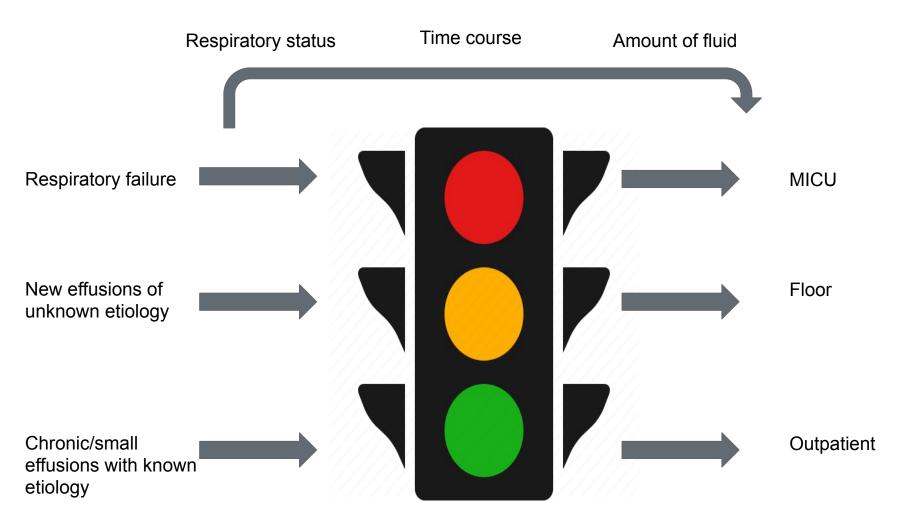
#### Two Mechanisms:

- 1. Excessive formation
  - a. Increase by 30 fold to create effusion
- 2. Disruption in absorption

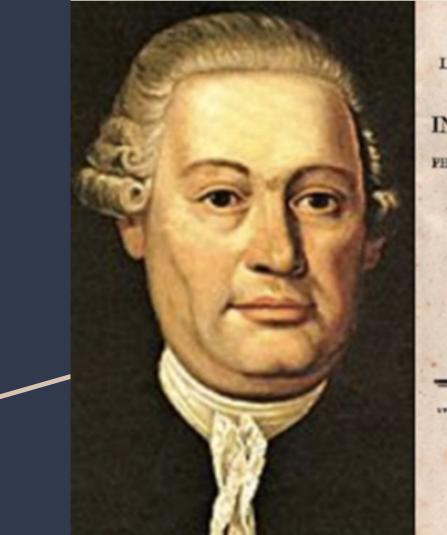
#### Consequences: Dyspnea

- 1. Restriction in lung expansion
- 2. Diaphragmatic strain






## Diagnosis


#### Box 1 | Important history points for patients with suspected or confirmed effusions

- Severity, duration, and rate of onset of breathlessness, cough, or chest pain
- Presence of constitutional symptoms such as fevers, sweats, or weight loss
- Recent injury or interventions to chest
- Recent illnesses, especially related to chest
- Recent hospital admissions or operations, especially cardiac surgery
- History of malignancy, or current active malignancy
- Previous exposure to tuberculosis
- Full occupational history, with names and dates of employers if known\*
- Exposure to asbestos (or asbestos-like substances), with clear relation to occupation and description of level of exposure (for example, did the patient work with a substance directly?)\*
- Tobacco smoking history
- Drugs, including recent changes to prescriptions and the use of any anticoagulants
- Assessment of evidence of uncontrolled cardiac, hepatic, or renal failure

\*These may be more easily and fully explored in the secondary care setting

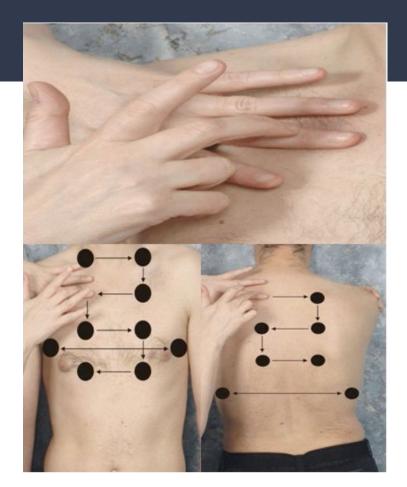






LEOPOLDI AUENBRUGGER MARICLE & DESTORES TH CALLER SETTS HORISANS ANTONIA start and a maintai and thanks. INVENTUM NOVUM 2.8 FERCUSSIONE THORACIS HUMANI UT SIGNO ABSTRUSOS INTERNI PECTORIS MORBOS

L'Maillist



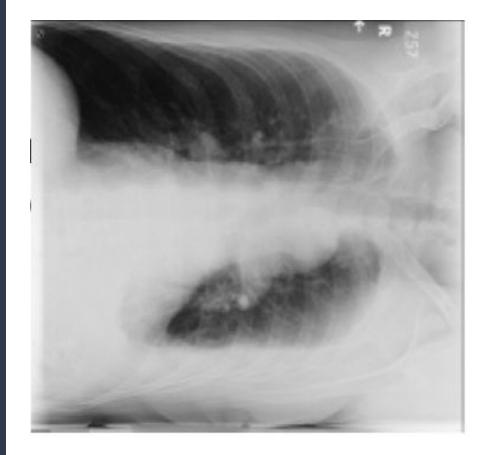

FINDOBONS. STR. DAILS THOME TRATER, Cal. Ban. Major. ATLA TUPORAMEL.

MOCCLAL

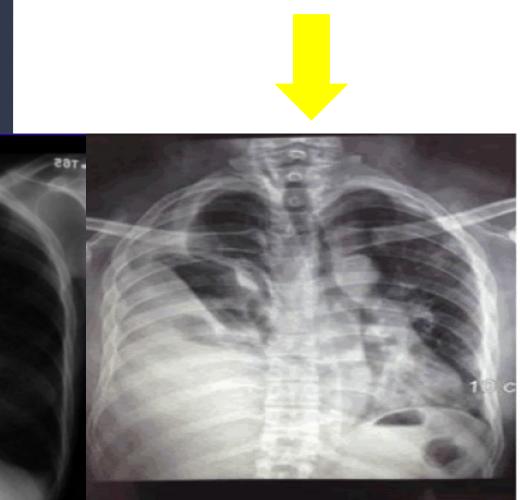
## Physical Exam

- Depends on volume
  - > **300 cc**
- Dullness to percussion
  - **> 500 cc**
- Decreased tactile fremitus
  - **> 500 cc**
- Decreased breath sounds
  - > **500 cc**
- Egophany
  - > 1000 cc
  - At upper level of effusion




#### CXR: Blunting of the costophrenic angle




## CXR: Meniscus Sign



### CXR: Lateral Decubitus



### CXR: Mediastinal Shift



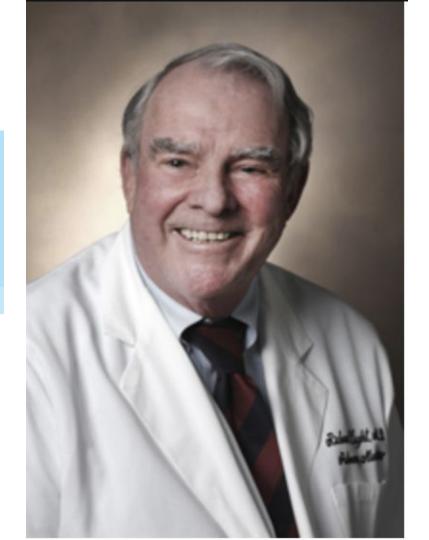
#### To tap or not to tap?

## **PLEURAL EFFUSION?**

## I'D TAP THAT

memegenerator.net

### Question 2


#### D. Lactate Dehydrogenase (LDH)

Which of the following studies can be used to determine if the patient's effusion is due to his CHF (a transudate) or is a parapneumonic effusion (an exudate)?

- a) Pleural fluid pH
- b) Pleural fluid glucose
- c) Pleural fluid cell count
- d) Lactate dehydrogenase (LDH)

#### THE STORY BEHIND LIGHT'S CRITERIA

Richard W. LIGHT, M.D. Professor of Medicine Vanderbilt University Nashville, Tennessee, USA e-mail: rlight98@yahoo.com



| Study            | Sensitivity % | Specificity % | Accuracy % | PPV % | NPV % |
|------------------|---------------|---------------|------------|-------|-------|
| Light (*72)      | 99            | 98            |            | 99    | 98    |
| Meisel ('90)     | 90            | 82            | 86         | 87    |       |
| Roth (*90)       | 100           | 72            |            |       |       |
| Valdez (91)      | 95            | 78            | 91         | 95    | 80    |
| Romero<br>(*93)  | 98            | 77            | 95         |       |       |
| Burgess<br>(*95) | 98            | 85            | 93         | 93    | 96    |
| Costa (*95)      | 98            | 82            |            |       |       |
| Vives ('96)      | 99            | 78            | 95         | 95    | 93    |

#### TABLE 2

## Light's criteria for distinguishing transudative from exudative pleural fluid

|                      | PLEURAL/SERUM<br>PROTEIN RATIO | PLEURAL/SERUM LACTATE<br>DEHYDROGENASE RATIO | SERUM LACTATE<br>DEHYDROGENASE |
|----------------------|--------------------------------|----------------------------------------------|--------------------------------|
| Transudate           | ≤ 0.5                          | ≤ 0.6                                        | ≤ 200 U/L*                     |
| Exudate <sup>+</sup> | > 0.5                          | > 0.6                                        | > 200 U/L*                     |

\*2/3 upper limit of normal serum level \*A single positive criterion is enough to classify the fluid as an exudate

| Light's Criteria                                             | Sensitivity<br>(%) | Specificity<br>(%) |
|--------------------------------------------------------------|--------------------|--------------------|
| Light's Criteria (1 or more of the following                 | 98                 | 83                 |
| Pleural fluid protein / Serum protein >0.5                   | 86                 | 84                 |
| Pleural fluid LDH / Serum LDH >0.6                           | 90                 | 82                 |
| Pleural fluid LDH > 2/3 * Serum LDH upper limit of<br>normal | 82                 | 89                 |

#### Other Exudate Criteria:

- Pleural fluid cholesterol : 45-60 mg/dL
- Pleural fluid / serum cholesterol : > 0.3

#### TRANSUDATIVE

OCCURS DUE TO INCREASED HYDROSTATIC PRESSURE OR LOW PLASMA ONCOTIC PRESSURE

E.G., CHF, CIRRHOSIS, NEPHROTIC SYNDROME, PE, HYPOALBUMINEMIA

> LOW IN PROTEIN AND LDH

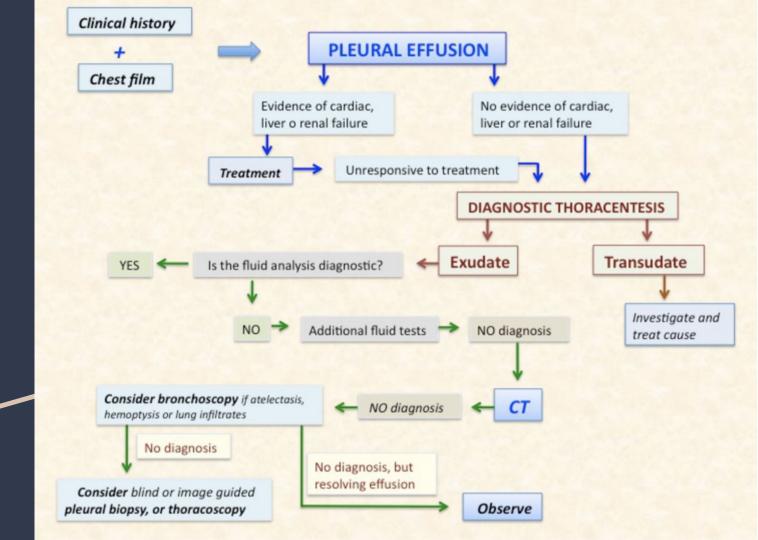
#### PLEURAL EFFUSION

#### ACCUMULATION OF FLUID WITHIN THE PLEURAL SPACE

#### EXUDATIVE

OCCURS DUE TO INFLAMMATION AND INCREASED CAPILLARY PERMEABILITY

E.G., PNEUMONIA, CANCER, TB, VIRAL INFECTION, PE, AUTOIMMUNE


HIGH IN

AND LDH

#### TABLE 2

#### Leading Causes of Pleural Effusion in the United States\*

| CAUSE                          | ANNUAL INCIDENCE | TRANSUDATE | EXUDATE   |
|--------------------------------|------------------|------------|-----------|
| Congestive heart failure       | 500,000          | Yes        | No        |
| Pneumonia                      | 300,000          | No         | Yes       |
| Cancer                         | 200,000          | No         | Yes       |
| Pulmonary embolism             | 150,000          | Sometimes  | Sometimes |
| Viral disease                  | 100,000          | No         | Yes       |
| Coronary-artery bypass surgery | 60,000           | No         | Yes       |
| Cirrhosis                      | 50,000           | Yes        | No        |



### Question 3

#### C. Hepatic Hydrothorax

The fluid from thoracentesis has a pH of 7.3, which can be consistent with either CHF or a parapneumonic effusion. Which of the following types of pleural effusions have a pleural fluid pH greater than 7.2?

- a) Empyema
- b) Rheumatoid pleuritis
- c) Hepatic hydrothorax
- d) Urinothorax

#### Pleural fluid acidosis

#### pH < 7.3

Esophageal rupture

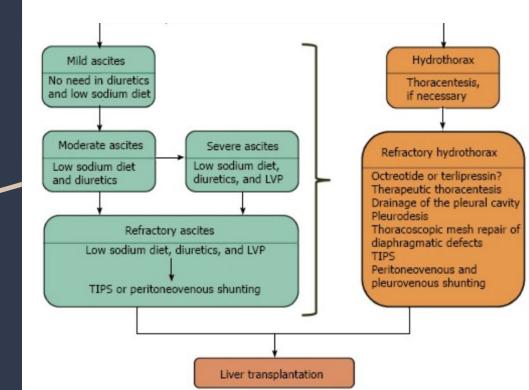
Empyema (pH < 7.2); Complicated Parapneumonic

Rheumatoid pleuritis

Malignant pleural disease

**Tuberculous pleuritis** 

Lupus pleuritis


Urinothorax (Transudate)

Hemothorax

Systemic acidosis

## Hepatic Hydrothorax

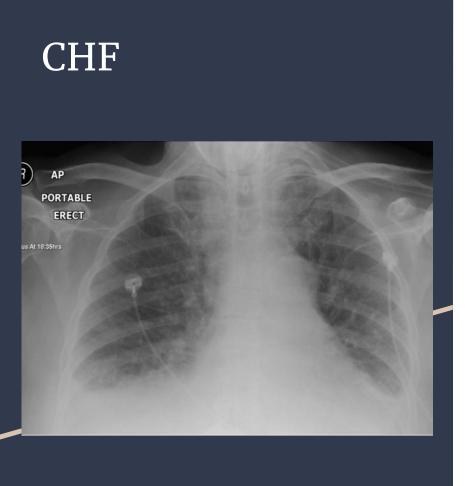
- Serous transudate ; pH > 7.3
- Passage of ascitic fluid from peritoneal cavity into pleural space
- 20% have no significant ascites
- Unilateral R>L (17%) or Bilateral (3%)



### Empyema

## Axial CT shows left pleural effusion...

#### ....Does right sided chest tube


- *Exudate (pus);* pH < 7.2
- 50% associated with PNA
- Gram stain + organisms
- PMN predominance
- Low glucose
- Elevated LDH > 1000
- Chest tube drainage

### Question 4

#### D. Effusion due to CHF

Results of the patient's pleural fluid and serum glucose measurements are 56 mg/dL and 90 mg/dL, respectively. Which of the following types of effusions typically have a pleural fluid glucose concentration similar to that of blood glucose?

- a) Malignant effusion
- b) Lupus pleuritis
- c) Esophageal rupture
- d) Effusion due to CHF



- Transudative effusion
- Result of pulmonary venous hypertension + increased hydrostatic pressure
- Rate of pleural fluid accumulation exceeds reabsorption
- Bilateral effusions; R > L
- Low cell count, low protein
- Treat heart failure
- If large effusion with profound dyspnea > thoracentesis
- If exudative evaluate proBNP

### Question 5

## A. Typical parapneumonic effusion

Results of additional pleural fluid studies reveal an LDH of 670 U/L and a protein level of 3.4 g/dL. Gram stain and culture are negative. pH is 7.3. Based on these values, what is the most likely cause of this patient's pleural effusion?

- a) Typical parapneumonic effusion
- b) Complicated parapneumonic effusion
- c) Empyema
- d) CHF

## Parapneumonic effusion

- Exudative
- 20-40% patients with PNA
  - Primarily bacterial
  - PMN predominant
- Higher mortality rate

#### 3 phases

- 1. Early exudative phase
- 2. Intermediate fibropurulent phase
  - a. Chest tube drainage
  - b. Intrapleural lytics
- 3. Late organizing phase

#### Parapneumonic effusion

- Intervention :
  - 50% of hemithorax
  - Loculated
  - <u>Complicated</u>
    - +Gram stain , +Cx
    - Purulent, pH < 7.2 (empyema)
    - Glucose < 60, LDH >3x ULN

## Thank you!

