MYELOPROLIFERATIVE NEOPLASMS

Matthew Ulrickson, MD Banner MD Anderson Cancer Center September 20, 2016 Matthew.Ulrickson@bannerhealth.com

Objectives

- Discuss an approach to increased cell counts
- Discuss clinical and laboratory diagnosis of myeloproliferative neoplasms
- Overview of treatment options and potential complications of disease and therapy

ന ſ Σ ഗ \Box

<u>.</u>

Banner

Figure 12-3 Classical hierarchal map of hematopoietic development

Myeloproliferative Disorders

មារមា

Nature Reviews | Cancer

Marrow Production and Peripheral Blood Half-Life

	<u>Output/day</u>	Blood Count	<u>Lifespan</u>
RBC	200 x 10 ⁹	<mark>∼ 5 x 10⁶/μL</mark>	120 days
WBC	10 x 10 ⁹	∼ 3 x 10³/μL (neutrophils)	< 1/2 day
Plts	400 x 10 ⁹	<mark>∼ 200 x 10³/</mark> μL	10 days

Leukocytosis

- A word to discourage from clinical use
 - Be more specific!
- For diagnosing MPNs focus on Absolute counts, not %
- Specific type of cell will help build your differential
 - Neutrophilia: leukemoid reaction/reactive, CML, myelofibrosis
 - Lymphocytosis: CLL, MBL, pertussis,
 - Monocytosis: CMML, TB/fungal,
 - Eosinophilia : allergy/atopy, parasites, adrenal insufficiency, CEL
 - Basophilia: CML
 - Peripheral Blasts: Acute leukemia, high-grade MDS

Case 1 - Presentation

- 32yo resident presents with sore throat and fever
- Cervical adenopathy is present on exam
- CBC: 35>45%<455k

Case 1 - Differential

- 86% Neutrophils
- 12% Immature Granulocytes
- 2% Lymphocytes

- Rapid strep test is positive
- He improves with a course of antibiotics

©2013 by American Society of Hematology

Origin of MPN

MF: Dr. Gustav Heuck 1879 Two cases of leukemia with peculiar blood and bone marrow findings, respectively PV: Dr. Louis Henri Vaquez 1892 On a special form of cyanosis accompanied by excessive and persistent erythrocytosis Dr. Osler coins "Vaquez's disease" in 1903 chronic cyanosis with polycythemia and enlarged spleen ET: Drs. Emil Epstein and Alfred Goedel 1934 Hemorrhagic thrombocythemia with a cascular, sclerotic spleen

т	авія 1.—	The Mye	loproliferative Di	sorders		
	My	elostimul	atory Factor's) -		Potential bone	Essential > Rolycythemia
Syndromes			Bone marrow		marrow	Thrombocytosis
	Erythro- blasts	Granu- locytes	Megakaryocytes	Fibroblasts	Myeloid meta- plasia of spleen and liver	and a second
Chronie Granulocytic Leukemia	±	+++	+ to +++	+	++	Thrombosis
Polycythemia Vera	+++	++	++ to +++	+ to +++	+ to +++	Hemorrhage
Idiopathic or Agnogenic Mycloid Metaplasia of Spleen	±	±	+++	+ to +++	+++	Leukemic Transformation
Megakaryocytic Leu- kemia	±	±	+++	+	+ to +++	
Erythroleukemia (in- cluding diGuglielmo syndrome)	+++	+	±	±	+ to +++	
Degrees of Proliferation	m: + ++ +++	- slight - modera - marked	te	12		Myelofibrosis 1951
			0			Dameshek et al. <i>Blood</i> 1951;6:372-375 Levine and Gilliland <i>Blood</i> 2008;112:2190-2198

Lab Features of PV, ET, and MF

Campbell P and Green A. N Engl J Med 2006;355:2452-2466

Making a Molecular Diagnosis

Tefferi A, Vardiman JW. Leukemia. 2008;22:14-22; Vardiman JW, et al. Blood. 2009;114(5):937-951 Mesa RA. Blood. 2009;113(22):5394-5400; Tam CS, et al. J Clin Oncol. 2009;27:5587-5593.

Making a Molecular Diagnosis

Tefferi A, Vardiman JW. Leukemia. 2008;22:14-22; Vardiman JW, et al. Blood. 2009;114(5):937-951 Mesa RA. Blood. 2009;113(22):5394-5400; Tam CS, et al. J Clin Oncol. 2009;27:5587-5593.

Klampfl NEJM 2013

Jak 2 Testing in MPN

Baxter et al *Lancet* 2005. 365:1054 Levine et al *Cancer Cell* 2005. 7:387. James et al. *Nature* 2005. 434: 1144

Calreticulin as the 'other mutation'

PV and ET Diagnostic Criteria

WHO Criteria¹: PV

Major Criteria (first major + 2 minor or both + 1 minor) •Hgb > 18.5 g/dL in men, 16.5 g/dL in women or other evidence of RCV*

Jak2V617F or other mut Jak2 exon 12

•BM Trillineage proliferation

Low Epo level

Endogenous ECF in vitro

*Hgb or Hct > 99th% of reference rage or Hgb > 17 g/dL in men , 15 g/dL in women if at least 2 g/dL above baseline not attributed to correction of Fe def. or elevated RCM > 25% above predicted

WHO Criteria¹: =

Major Criteria (all required) •Plt Count ≥ 450 x 10⁹/L sustained*

Megakaryocyte proliferation with increased
 # of enlarged mature megakaryocytes

 Does not meet criteria for other myeloid d/o (PV[¥], MF[†], CML[‡], MDS^j)

 Clonal marker (Jak2V617F) or no evidence of reactive thrombosis[§]

*during the w/u

¥ failure of Fe to to increase Hgb in setting of a low ferritin † absence of relevant reticulin or collagen fibrosis, leukoerythroblastosis, or abnml meg morphology (n/c ratio, hyperchromatic, bulbous, irregularly folded nuclei, and dense clustering) ‡ absence of BCR-ABL1.

absence of erythroid and granulocytic dysplasia

§ the presence of a condition associated with reactive thrombocytosis (Fe def, infection, inflammation, met cancer, connective tissue disease, lymphoproliferative d/o) does not exclude possibility of ET

¹Vardiman JW, et al. Blood. 2009;114(5):937-951.

Case 2 - Presentation

- 65yo woman is referred for 'abnormal labs'
- Nonsmoker, no OSA, no history of pulmonary disease.
 She does not live at altitude.
- She reports pruritis but no other symptoms
- O2 saturation 98% RA
- Hb = 19
- WBC 9 Plt 400k

Next Tests?

Case 2 – Diagnostics: Polycythemia Vera

- EPO = 5 (2-18)
- JAK2 V617F mutation positive
- There is no need for a bone marrow with positive JAK2 in PV
- (Potential causes of secondary polycythemia include altitude, lung disease/hypoxia, renal cell carcinoma and hepatocellular carcinoma as well as testosterone/anabolic steroid use or exogenous EPO)

Case 2 – Treatment: Back to the Future

- Goal Hct is <45% (better than <50% in randomized trial by Marchioli et al. NEJM 2013 368:22)
 - Phlebotomy
 - Hydroxyurea

ASA

Ancient Greek Painting

Photograph from the Burns Archive 1860

Patients with PV cannot donate blood, but patients with hemochromatosis can

CYTO-PV Study: 45% vs 50%

- 365 patients, randomized
- Primary end point
 - death from cardiovascular causes or thrombotic events
- HU or phlebotomy allowed

Marchioli et al. NEJM 2013 368:22

ECLAP: ASA vs Placebo in PV

- Efficacy and Safety of Low Dose Aspirin in PV
 - Multicenter European Study
- 518 patients, randomized
- Mean follow up 3 years
- More smokers in ASA arm
- Other tx as needed
 - Cytoreduction (HU)
 - Phlebotomy
- No difference in overall mortality
- NS reduction in major thrombosis
- Major bleeding not different

Landolfi et al. NEJM 2004. 350:114

Case 3 - Presentation

- 55yo man presents with fatigue, and abnormal labs prior to upcoming hernia surgery.
- He has no active infections. Exam reveals no major findings and his hernia is easily reducible without associated erythema or tenderness.
- CBC: 27>45%<750
- N65%, L25%, M8%, E2%

Next Tests?

Peter Maslak

Case 3 - Diagnostics

- JAK2 V617F mutation negative
- BCR/ABL negative
- CALR positive
- Bone Marrow increased megakarycytes, some are increased in size but not abnormal. No increase in fibrosis.
- Diagnosis of Essential Thrombocythemia

HU in High-Risk ET

Cortelazzo et al. N Engl J Med 1995;332:1132 Finazzi et al. Br J Haematol 2000;110:577

HU in High-Risk ET

Cortelazzo et al. N Engl J Med 1995;332:1132 Finazzi et al. Br J Haematol 2000;110:577

Who gets treated with ET (and who just phones home)?

	Age <60yo	Age >60yo
No prior Thrombosis	NO CYTOREDUCTION	Cytoreduce
Prior Thrombosis*	Cytoreduce	Cytoreduce

Barbui, JCO. 2011;29: 761.

* Includes CVA, TIA, AMI, Arterial thrombus, or VTE

Table 2. Significant risk factors for thrombosis in 891 patients with WHO-defined ET and associated prognostic scores

Risk factor	HR	Score
Age > 60 y	1.50	1
Cardiovascular risk factors	1.56	1
Previous thrombosis	1.93	2
<i>JAK2</i> V617F	2.04	2

Low risk implies a score = 0-1; intermediate risk, score = 2; and high risk, score \ge 3.

Barbui, Blood 2012. 120:5128

ET vs. MF vs. Control

Barbui T et al. J Clin Oncol. 2011;29:3179-3184

Case 4 - Presentation

- 62yo woman presents with LUQ abdominal pain, early satiety and weight loss x 3 months
- Examination reveals splenomegaly 8cm below the costal margin
- Next Test?

©2013 by American Society of Hematology

MF Diagnostic Criteria

WHO Criteria¹: Primary MF

Major criteria (all required)

- Megakaryocyte proliferation and atypia

 Reticulin or collagen fibrosis
- Does not meet criteria for other myeloid disorders (e.g., PV[¥], CML[‡], MDS^j)
- Clonal marker (e.g., MPLW515K/L, JAK2V617F) or no evidence for secondary marrow fibrosis[§]

Minor criteria (must meet 2)

- Increase in serum LDH
- Palpable splenomegaly
- Leukoerythroblastosis
- Anemia

¥ failure of Fe to to increase Hgb in setting of a low ferritin ± absence of BCR-ABL1.

absence of erythroid and granulocytic dysplasia

§ infection, autoimmune, chronic inflammatory, hairy cell leukemia or other lymphoid neoplasm, met malignancy, or toxic chronic myelopathies

IWG Criteria²: Post-ET MF & Post-PV MF

Major criteria (all required)

- Previous diagnosis of ET or PV
- Grade 2-3 bone marrow fibrosis (on 0-3 scale) or Grade 3-4 bone marrow fibrosis (on 0-4 scale)

Minor criteria (must meet 2)

- ≥5 cm increase in palpable splenomegaly or new splenomegaly
- Leukoerythroblastosis
- One or more constitutional symptoms
- Increase in serum LDH (Post-ET MF only)
- Anemia with a Hgb ≥2 mg/mL decrease from baseline (Post-ET MF only)
- Anemia or sustained loss of requirement for either cytoreductive treatment or phlebotomy (Post-PV MF only)

¹Vardiman JW, et al. *Blood*. 2009;114(5):937-951. ²Barosi G, et al. *Leukemia*. 2008;22(2):437-438.

MF Disease Features

- 85% or more of MF patients present with palpable splenomegaly at the time of diagnosis¹
- 60% to 80% of MF patients report spleen-related symptoms²
 - e.g., abdominal pain / discomfort, early satiety
- Other MF symptoms that can be present include³
 - Pruritus
 - Night sweats
 - Bone pain

Splenomegaly in MF Patient

Image courtesy of MD Anderson Cancer Center

¹Barosi G. *J Clin Oncol.* 1999;17:2954-2970. ²Scherber RM, et al. *Blood.* 2011;118(2):401-408. ³Mesa RA, et al. *Leuk Res.* 2009;33:1199-1203.

Symptoms in 1179 MPN Patients

Mesa et. al. Cancer 2007;109:68-76

COMFORT-I: Spleen Volume Reduction Jakafi (ruxolitinib) provided significant improvement in spleen volume

Verstovsek et al. N Engl J Med 2012;366:799-807

COMFORT-I: Symptom Improvement Significant improvement in MF symptoms (MFSAF v2.0) Jakafi (ruxolitinib) provided significant

Verstovsek et al. N Engl J Med 2012;366:799-807 Scherber et al. Blood 2011;118:401-408

Patient

Itching

Bone/muscle pain

50% Reduction

Spleen Size Reduction Is Independent Of JAK Mutation Status Or Disease Subtype

Marstavaali at al ACH 0000, a756

Overall Survival in COMFORT I

Verstovsek S et al. N Engl J Med 2012;366:799-807.

56yo man admitted with abdominal pain and leukocytosis

- 4 days of abdominal pain and diarrhea
- Recently discharged from the hospital
- Temp 100.8 HR 110
- Abdomen diffusely tender to palpation

©2012 by American Society of Hematology

What is the most likely diagnosis?

56yo admitted with abdominal pain and leukocytosis

- 3 months of gradually increasing abdominal pain, L>R
- Temp 100.8 HR 110
- Abdomen TTP in the LUQ, spleen palpable 8cm below the costal margin

What is the most likely diagnosis?

George T I Hematology 2012;2012:475-484

©2012 by American Society of Hematology

Peripheral blood smear

CML clinical features

- ~4500 new US cases per year
- Median age at presentation 53 years
- 60% men
- Disease is clinically divided into three phases
 - Chronic phase
 - Accelerated phase
 - Blast crisis (lymphoid (ALL) or myeloid (AML))

Progression of CML

Clinical Course: Phases of CML

Chronic nhase	Advanced phases			
	Accelerated phase	Blastic phase (blast crisis)		
Median 4–6 years stabilization	Median duration up to 1 year	Median survival 3–6 months		
	Cooperating m	utations*		

*loss of p53; trisomy 8; second Ph; PAX5 deletion; others

CML BCR/ABL1 fusion gene, the result of a genomic rearrangement

Copyright 2007, Terese Winslow

Normal Bcr-Abl Signaling*

- The kinase domain activates a substrate protein, eg, PI3 kinase, by phosphorylation
- This activated substrate initiates a signaling cascade culminating in cell proliferation and survival

ADP = adenosine diphosphate; ATP = adenosine triphosphate; P = phosphate.

Savage and Antman. *N Engl J Med.* 2002;346:683 Scheijen and Griffin. *Oncogene.* 2002;21:3314.

Mechanism of Activation of Bcr-Abl

Mechanism of Activation of Bcr-Abl

Mechanism of Action of Imatinib

Mechanism of Action of Imatinib

Adapted from Goldman JM, Melo JV. N Engl J Med. 344:1084-1086

Mechanism of Action of Imatinib

Adapted from Goldman JM, Melo JV. N Engl J Med. 344:1084-1086

Imatinib has dramatically improved survival

Next Generations of TKIs

- Dasatinb improved responses compared to imatinib (DASISION, Kantarjian NEJM 2010 362(24): 2260)
- Nilotinib improved responses compared to imatinib (ENESTnd, Saglio NEJM 2010 362(24)2251)
- Ponatinib effective against T315I mutations
- Bosutinib

Side effects of TKIs

- Common side effects: edema, myalgias (rhabdo), cytopenias, LFTs, CYP450
- Dasatinb pleural effusions
- Nilotinib diarrhea, pancreatitis
- Ponatinib- cardiovascular events
- Bosutinib

Can you stop medication?

- Ross et al. Blood 2013.
- In selected patients yes, but follow very closely

Questions?

II... AND YOU CANNOT CHANGE A THING, AS YOU ARE COMPLETELY CONTROLLED BY YOUR GENES."

Treating a Molecular Disease

PV Results: Hct % (n=34)

Normalization of Hct % Achieved in the Absence of Phlebotomy

Ruxolitinib (JAK2 inhibitor)

ET Results: Platelets

- Rapid and Sustained Reduction in Platelets
- Baseline median platelets of 884 decreased to 558 after 6 months
- At baseline, 13 patients (33%) had platelets > 1000 x10⁹/L
 - Baseline median platelets of 1443 decreased to 553 after 6 months

Mean Changes In Platelet Counts

Myeloid Malignancies

Myeloproliferative neoplasms

- enhanced proliferation/survival
- normal differentiation
- high white blood cell count
- may progress to AML

Myelodysplastic syndrome

- impaired differentiation
- low blood cell counts
- may progress to AML

Acute myeloid leukemia (AML)

- enhanced proliferation and survival
- impaired differentiation
- limitless self-renewal

Myeloid Precursors

Myeloblast Promyelocyte Myelocyte Metamyelocyte Band Neutrophil

Case 5 - Presentation

- 35yo female presents with abdominal pain and jaundice
- She has no history of liver disease, heavy EtOH intake, or thrombosis.
- Exam reveals ascites and RUQ pain, icteric sclerae

Case 5 - Presentation

- 35yo female presents with abdominal pain and jaundice
- She has no history of liver disease, heavy EtOH intake, or thrombosis. No recent surgery, immobility, trauma, or plane flights.
- Exam reveals ascites and RUQ pain, icteric sclerae
- T Bili = 12
- RUQ ultrasound with doppler reveals portal vein thrombosis.

Additional tests to consider

- Mesenteric/portal vein thrombosis without risk factor (cirrhosis):
 - JAK2 V617F mutation (~32% of all splanchnic vein thromboses associated with this mutation) (Dentali, Blood 2009, 113:5617)
 - ***about half of these patients will have abnormal blood counts at time of clot
 - Flow cytometry to evaluate for PNH (paroxysmal nocturnal hemoglobinuria via CD59, GPI deficient clone) (*rare*)
 - Most of these patients will have intermittent 'hematuria'/hemolysis
 - May also present with cerebral thromboses
 - May also have cytopenias (aplastic anemia, MDS assoc)

