FISHing for Acute Leukemia

Matthew Ulrickson, MD Banner MD Anderson Cancer Center September 12, 2017

Objectives

- * Discuss the clinical presentation and diagnosis of acute leukemia
- * Discuss the impact of molecular features on prognosis and management
- * Discuss the treatment of AML in the elderly
- * Discuss up front management of APL and ALL

*Case Presentation

- *32yo resident presents with sore throat and fever
- *Cervical adenopathy is present on exam

*CBC: 35>35%<35k

*Peripheral Smear

- *92% Other
- *4% Lymph
- *4% Neutrophils

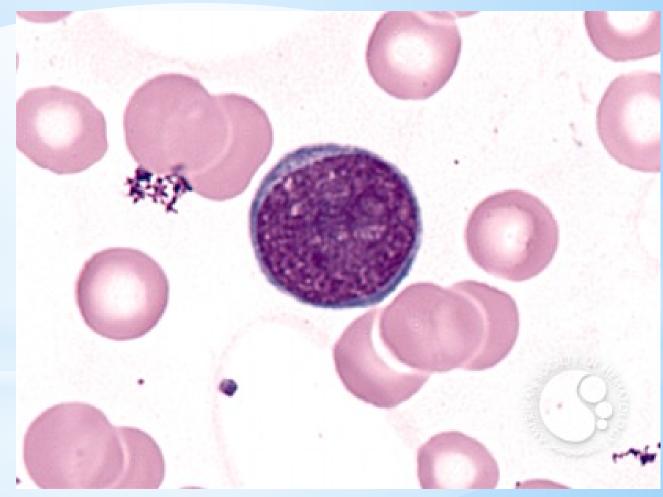
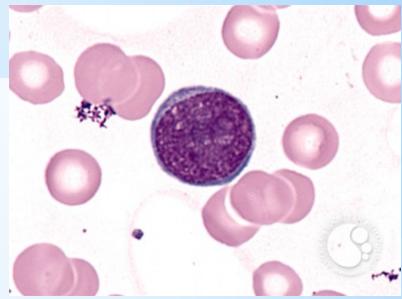



Image courtesy of Peter Maslak

*Peripheral Smear

- *92% Blasts
- *4% Lymph
- *4% Neutrophils

- *He was diagnosed with Ph+ Acute Lymphoblastic Leukemia
- *Induction chemotherapy plus dasatinib was recommended

* Case Presentation

- * 52yo man develops intermittent fevers x 2 weeks
- * Later, chest pain, dyspnea on exertion, followed by marked fatigue.
- * No other B symptoms and no bruising or bleeding.
- * No other PMHx, never smoker, rare EtOH
- * 1 full brother, 1 full sister
- * Exam: Temp 37.3, HR 117, BP 107/54, RR 24
- * Conjunctival rim pallor noted, tachycardic with systolic murmur present at the apex. No LAD or HSM

* Initial testing

* CBC: 6.9>2.6<79 MCV 100

Initial testing

* CBC: 6.9>2.6<139 MCV 100

* 32% neutrophils, 6% bands, 2% lymphocytes, 1% monocytes, 1% metamyelocytes, 1% myelocytes and 53% 'other' cells.

* Peripheral smear * Atypical immature cell population with high N:C ratio, nucleoli

*Reticulocyte 0.3%; absolute 2000/µl

*Cr 0.8, total bilirubin 0.4, LDH 392, albumin 3.7, AST 45, ALT 145,

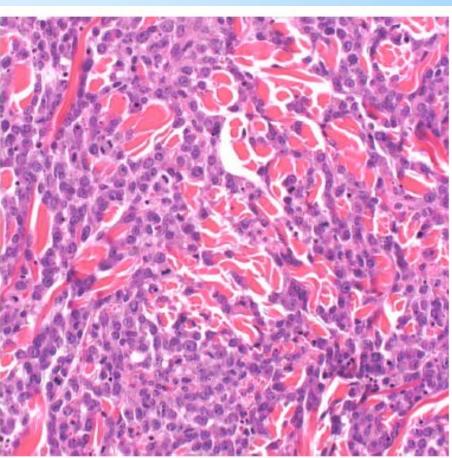
* Clinical Symptoms of AML

- * Bone Marrow Failure (Cytopenias)
 - * Anemia dyspnea, pallor, chest pain
 - * Neutropenia infections
 - * Thrombocytopenia bleeding, petechiae
- * Coagulopathy
 - esp APL, Acute myelomonocytic leukemia
- * Tissue invasion

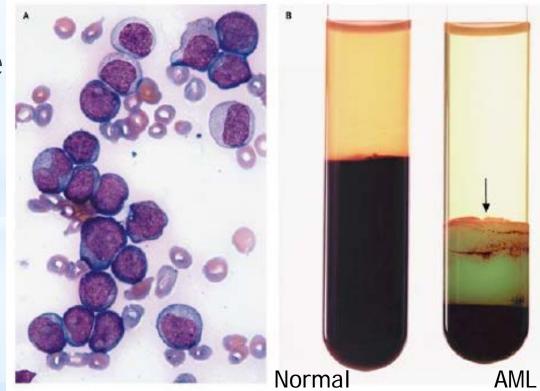
* Tissue Invasion in AML

* Associated with high WBC, monocytic subtypes, CD56+

- * Can Involve
 - spleen
 - gums
 - perianal
 - skin
 - renal
 - lung


* Chloroma

* Leukemia Cutis



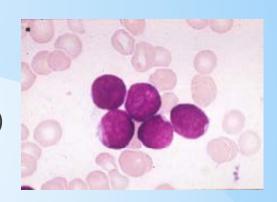
* High Circulating Blasts

- * Hypoglycemia
- * Hypoxia
- * Hyperkalemia
- * Elevated Lactate

Mauro MJ NEJM 2003. 349:767

Evaluation of patient with AML

- *Initial triage
 - History and Physical
 - CBC with differential (look at the peripheral smear)
 - BMP, LFTs, uric acid, ABO type and screen
 - •PT, PTT, fibrinogen



Evaluation of patient with AML

*Initial triage

- History and Physical
- CBC with differential (look at the peripheral smear)
- BMP, LFTs, uric acid, ABO type and screen
- PT, PTT, fibrinogen

* Diagnosis

- Bone marrow biopsy
- FISH and cytogenetics, flow cytometry
- Molecular: FLT3, NPM1, CEPBA, IDH, ckit (can be sent on PB)
- If circulating blasts, send peripheral blood for flow cytometry (STAT) to make dx

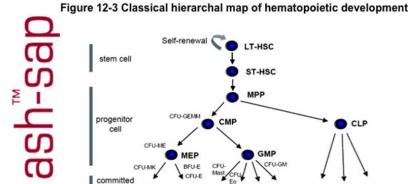
Evaluation of patient with AML

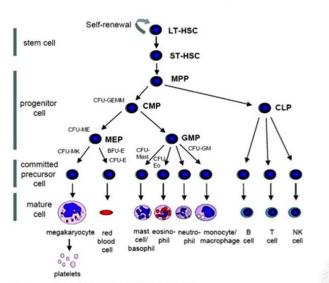
*Initial triage

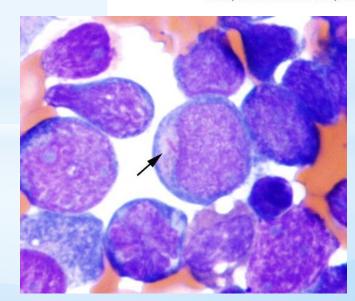
- History and Physical
- CBC with differential (look at the peripheral smear)
- BMP, LFTs, uric acid, ABO type and screen
- PT, PTT, fibrinogen

* Diagnosis

- Bone marrow biopsy
- FISH and cytogenetics, flow cytometry
- Molecular: FLT3, NPM1, CEPBA, ckit (can be sent on PB)
- If circulating blasts, send peripheral blood for flow cytometry (STAT) to make dx


*Plan ahead


- HLA typing (Type I for platelets, Type I and II for SCT)
- Identify siblings and brief health history, CMV serostatus
- Consideration of future fertility


Differentiate AML vs ALL

- * Rarely, can see Auer Rods
 - Only in myeloid blasts
- * Flow cytometry
- * Cytogenetics t(8;21), inv16, t(9:22)

* Immediate Emergency?

- * Leukostasis (leukapheresis)
 - Pulmonary or neurological symptoms related to increased serum viscosity
 - Can occur
 - * when myeloid blast count >50-100k
 - * When lymphoid blast count >400k
 - * very rare in CLL
- * DIC (esp APL and monocytic)
 - Aggressive product replacement
- * Initial treatment can trigger SIRS
- * Tumor lysis syndrome

* How soon to treat the others?

- * Sekeres et al Blood 2009. 113:38
 - No increase in mortality when treatment started within 5 days for patients >60yo.
 - In younger, earlier the better
- * Obtain necessary diagnostic information prior to selecting regimen
 - Echocardiogram
 - Central line (anthracycline is vascular irritant, extravasation toxicity)

AML vs ALL with flow cytometry (or IHC)

Myeloid	B-cell (lymphoid)	T-cell (lymphoid)
CD13	CD10	CD2
CD33	CD19	CD3
c-kit	CD20	CD4
CD14	CD22	CD5
CD64	Surface Ig	CD7
Glycophorin A		CD8
CD41		
MPO		
2524		

CD34 marks these cells as immature blasts (rare exceptions of CD34-negative blasts) The same marker as for HPC

* Day 1

- * Only day 0 in transplant
- * Day 1 = first day of chemotherapy
 - * Knowing how long since last chemo lets us anticipate and interpret

* 7+3 = 3+7

- * Induction
 - Anthracycline (3 days)
 - Daunorubicin 60-90mg/m2 better than 45mg
 - * Idarubicin 10-12mg/m2
 - * Mitoxantrone 12-15mg/m2
 - Cytarabine (ara-C) 7 days continuous infusion
 - * 100mg/m2 better than 200mg/m2

Berman et al. Blood 1991. 77:1666 Ohtake et al. Blood 2011. 117:2358 Rowe et al. Blood 2004. 103:479 Wiernik et al. Blood 1992. 79:313 * 3+4 = ?

- * 3 days of anthracycline (same as 7+3)
- * 4 days of cytarabine at 1gm/m2
 - Burnett et al. JCO 2013
 - High-dose AraC benefits <45yo (FLAG-Ida)
- * No data yet published on this regimen
 - Extensive experience in Houston
- * Day 21 marrow with this regimen

*Trials of Induction therapy in AML

Table 1 Results of selected trials of therapy for adult AML

Table 1 | Results of selected trials of therapy for adult AML

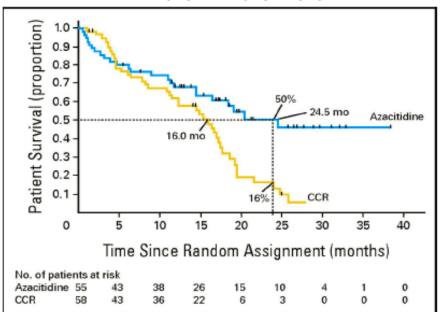
Trial	Regimen	n	CR total (%)	CR cycle 1 (%)	Early death (%)	Resistant disease (%)	0S 3-year (%)
PALG ³	DA	211	56	51	10	34	33
	DAF	219	59	55	9	32	35
	DAC	222	67.5	62	11	21	45
SWOG ⁶	DA	300	69	50	1	29	55
JALSG ⁷	DA	525	77.5	61.1	2	20	48
	IA	532	78.2	64.1	5	17	48
ECOG ⁵	D45A	293	57.3	41.1	4.5	39	33
	D90A	289	70.6	58.8	5.5	25	40
MRC ²	DA	240	83	NA	6	11	41*

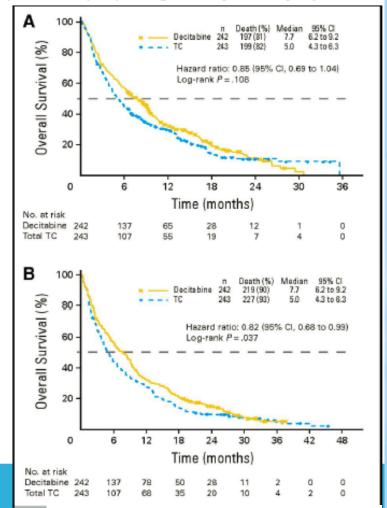
^{*5-}year overall survival. Abbreviations: CR, complete remission; D45A, DA 45 mg/m² per day; D90A, DA 90 mg/m² per day; DA, daunorubicin and cytarabine; DAC, daunorubicin, cytarabine and cladribine; DAF, daunorubicin, cytarabine and fludarabine; IA, idarubicin; NA, not applicable; OS, overall survival.

* AML in the elderly

- * Increased resistance to chemotherapy (MDR1 expression)
- * More likely to have unfavorable cytogenetics
- * More likely secondary to MDS
- * More comorbidities

Mortality from 7+3 induction at 30 days


	Age					
	< 56	56 - 65	65 - 75	> 75		
Patient #	364	242	270	79		
ECOG PS						
0	2%	11%	12%	14%		
1	3%	5%	16%	18%		
2	2%	18%	31%	50%		
3	0%	29%	47%	82%		



Hypomethylating agents in AML

Age \geq 65
Dec 20 mg/m² daily x 10 days q 4 weeks
TC=SC(28) +/- LDAC (215) 20 mg/m² daily x 10 days q 4 weeks

Med Age 70 Aza 75 mg/m² daily X 7 days q 4 weeks CCR=BSC(27),LDAC (20), IC (11)

* Day 3-7

- * The pathology results begin to return
 - inv16 by FISH, confirmed by cytogenetics
 - cKIT mutation added = negative
 - FLT3 ITD, NPM1,CEPBA, IDHnegative

* Day 3-7

- * The pathology results begin to return
 - inv16 by FISH, confirmed by cytogenetics
 - cKIT mutation added = negative
 - FLT3 ITD, NPM1,
 CEPBA negative

Sowhat?!?

* WHO AML Categorization

- * >20% blasts in PB or BM required
 - except for *

Acute myeloid leukemia with recurrent genetic abnormalities

*AML with t(8;21)(q22;q22); RUNX1-RUNX1T1

*AML with inv(16)(p13.1q22) or t(16;16)(p13.1;q22); CBFB-MYH11

*APL with t(15;17)(q22;q12); PML-RARA

AML with t(9;11)(p22;q23); MLLT3-MLL

AML with t(6;9)(p23;q34); DEK-NUP214

AML with inv(3)(q21q26.2) or t(3;3)(q21;q26.2); RPN1-EVI1

AML (megakaryoblastic) with t(1;22)(p13;q13); RBM15-MKL1

Provisional entity: AML with mutated NPM1

Provisional entity: AML with mutated CEBPA

Acute myeloid leukemia with myelodysplasia-related changes

Therapy-related myeloid neoplasms

Acute myeloid leukemia, not otherwise specified

AML with minimal differentiation

AML without maturation

AML with maturation

Acute myelomonocytic leukemia

Acute monoblastic/monocytic leukemia

Acute erythroid leukemia

Pure erythroid leukemia

Erythroleukemia, erythroid/myeloid

Acute megakaryoblastic leukemia

Acute basophilic leukemia

Acute panmyelosis with myelofibrosis

*Myeloid sarcoma

Myeloid proliferations related to Down syndrome

Transient abnormal myelopoiesis

Myeloid leukemia associated with Down syndrome

Blastic plasmacytoid dendritic cell neoplasm

Vardiman et al. Blood 2009. 114:937-951

* WHO AML Categorization

- * >20% blasts in PB or BM required
 - except for *

Acute myeloid leukemia, not otherwise specified

Acute myoloid laukomia with recurrent genetic abnormalities.

MMO, M1, M2, M4, M5, M6, M7
MMMMEAN NOTHING!

AML with t(6;9)(p23;q34); DEK-NUP214

AML with inv(3)(q21q26.2) or t(3;3)(q21;q26.2); RPN1-EVI1

AML (megakaryoblastic) with t(1;22)(p13;q13); RBM15-MKL1

Provisional entity: AML with mutated NPM1

Provisional entity: AML with mutated CEBPA

Acute myeloid leukemia with myelodysplasia-related changes

Therapy-related myeloid neoplasms

Pure erythroid leukemia

Erythroleukemia, erythroid/myeloid

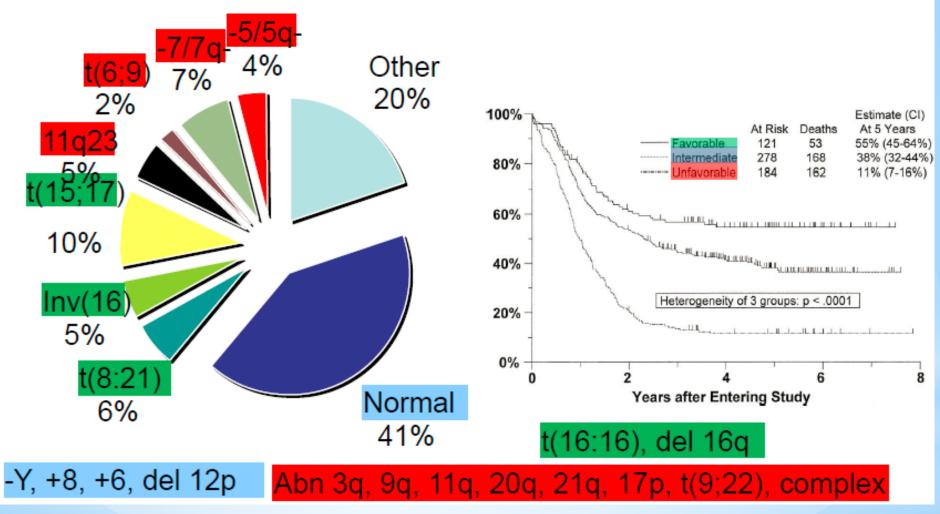
Acute megakaryoblastic leukemia

Acute basophilic leukemia

Acute panmyelosis with myelofibrosis

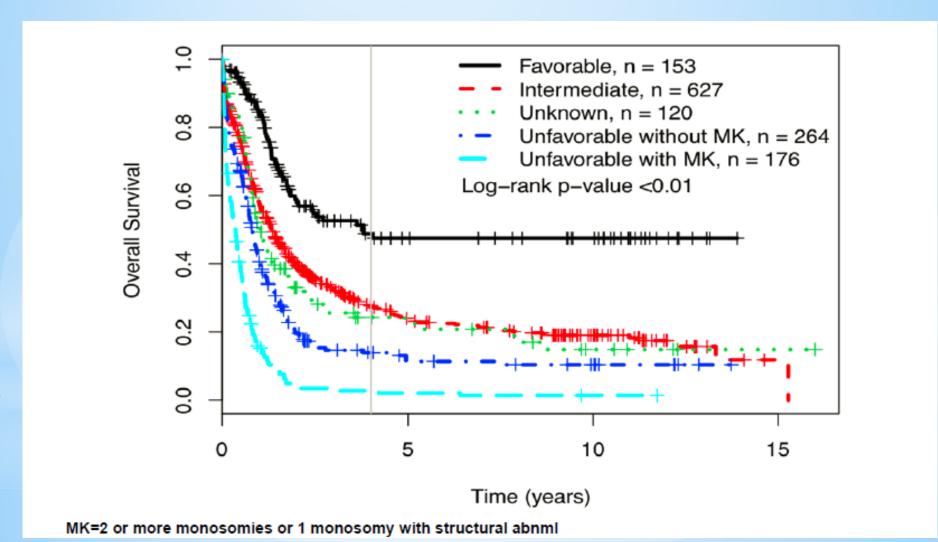
*Myeloid sarcoma

Myeloid proliferations related to Down syndrome

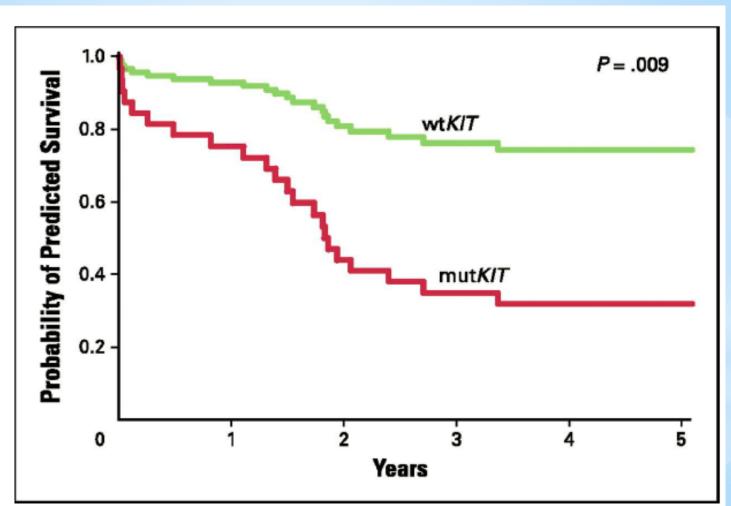

Transient abnormal myelopoiesis

Myeloid leukemia associated with Down syndrome

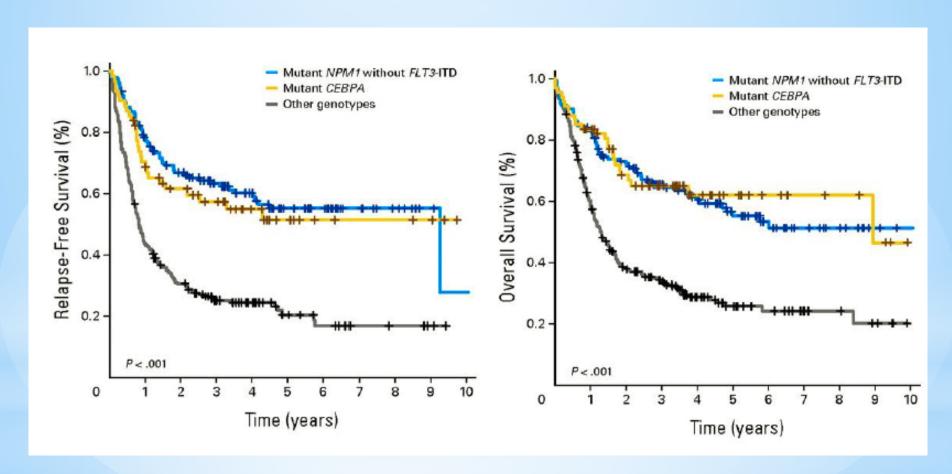
Blastic plasmacytoid dendritic cell neoplasm


Vardiman et al. Blood 2009. 114:937-951

Clonal Cytogenetic Abnormalities in Adult AML



Cytogenetics and Survival in AML


Medeiros et al. Blood 2010. 116:2224

Survival inv(16) AML based on KIT

AML with normal cytogenetics

*On target Mutations help optimally treat AML

- *Current targeted medicines available:
 - *FLT3 + = midostaurin
 - *IDH + = enasidenib
 - *Many other in clinical trials

Stein, EM et al. Blood. 2017 Aug 10;130(6):722-731. Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia.

Stone, RM et al. N Engl J Med. 2017 Aug 3;377(5):454-464.

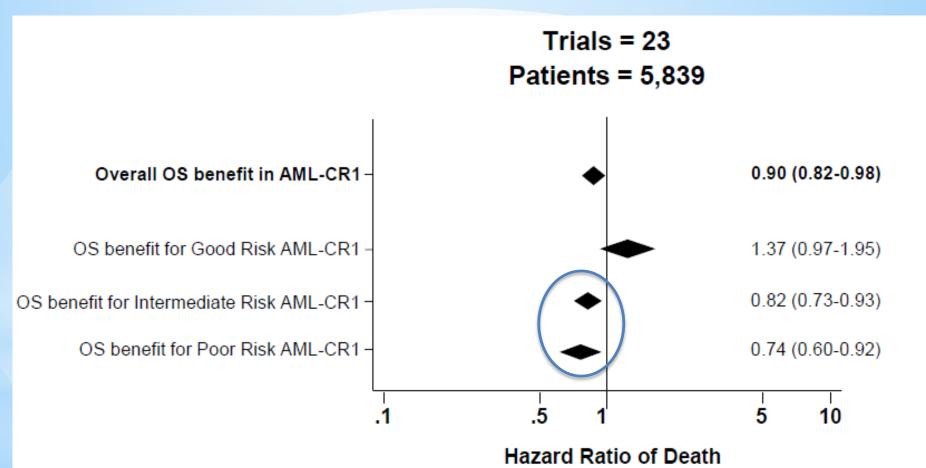
Midostaurin plus Chemotherapy for Acute Myeloid Leukemia with a FLT3 Mutation.

* So what is next?

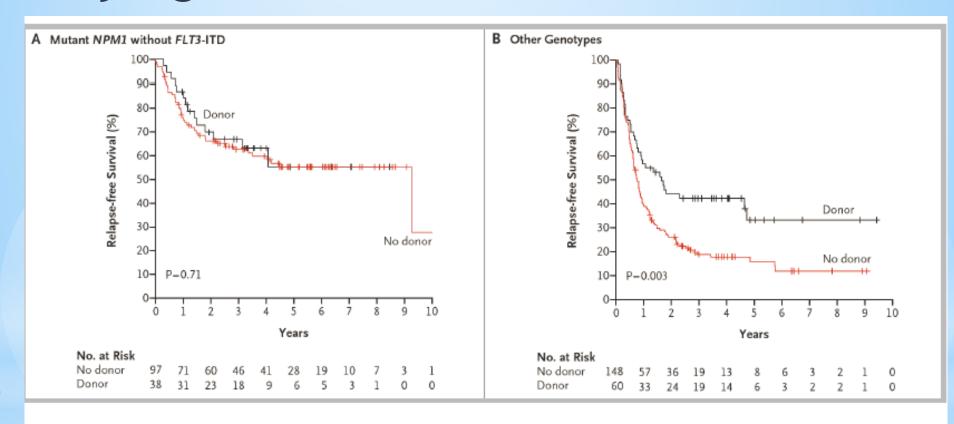
- * Need to achieve complete remission (CR)
 - <5% blasts by morphology AND PIt >100k and ANC >1.0
 - Day 14 or Day 21 marrow tells us some, but not all of CR definition
 - CR is one of the best predictors of OS for individual patient
- * If not in CR next line therapy
 - Minimal residual disease = ČR, but with detectable disease by flow/FISH/molecular
- * If in CR not done yet...

* AML in CR1

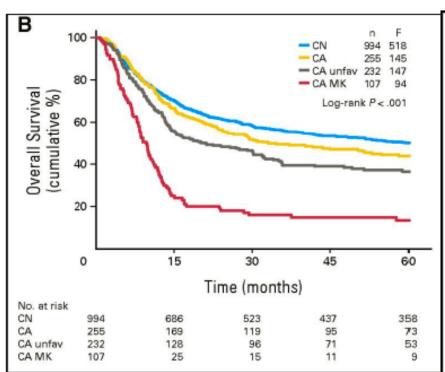
- * Consolidation with Cytarabine x 3-4 cycles
 - Burnett et al JCO suggests total of 4 (3 consolidation) is just as good as 5

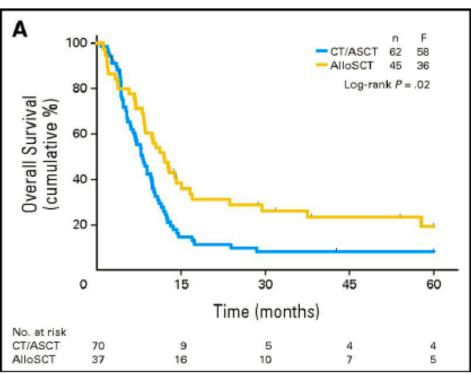

Hematopoietic Stem Cell Transplant (HCT)

*


Meta-analysis of RCTs of HCT for AML in CR1

*


HCT for AML with normal cytogenetics



HCT for MK AML

* Indications for Allogeneic SCT in AML

- * Primary Induction Failure (Primary Refractory)
- * Second (CR2) or later remission
- * Relapsed disease
- * CR1
 - Intermediate risk
 - Adverse risk cytogenetics
 - Secondary AML (MDS, prior chemotherapy)

* Our Patient

- * Enters a complete remission after induction
- * Completes 3 additional cycles of consolidation
- * Currently remains in remission, back at work, with regular follow up

* Our Patient

- * Enters a complete remission after induction 3+4
- * Completes 3 additional cycles of consolidation
- * Currently remains in remission, back at work, with regular follow up
- * But what if the disease comes back?

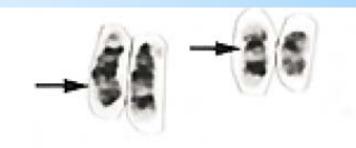
* When is enough?

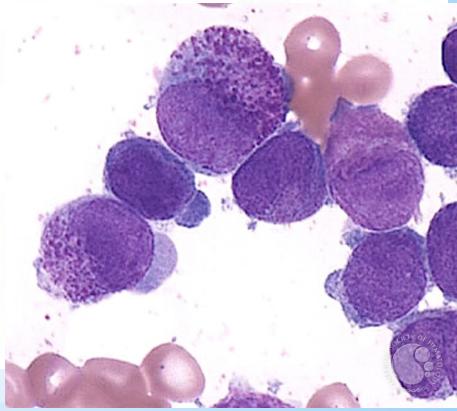
- *Estey Blood 1996
 - 206 pts, median age 56yo
 - Received chemotherapy for relapsed/refractory AML and did not go to transplant (1991-1994)

First Salvage (n = 206)	68% Conventional 32% investigational (topotecan, 2Cda, taxol)	CR rate 23%
Second Salvage (n = 93)	43% conventional 57% investigational	CR rate 11%
Third Salvage (n=40)		CR rate 10%
Fourth salvage (n=17)		CR rate 6%

*

Duration of CR1 and likelihood of response


Treatment	Likelihood of CR
CR1 >2yrs, 1st salvage n=15	73% (45-92%)
CR1 1-2yrs, 1st salvage n=30	47% (28-66%)
CR1 <1yr or no CR, 1st salvage n=160	14% (8-21%)
CR1 <1yr or no CR1 2nd - 4th salvage n= 58 (96 tx)	0% (0-4%)


* Acute Promyelocytic Leukemia (APL)

APL

t(15;17)(q22;q12)

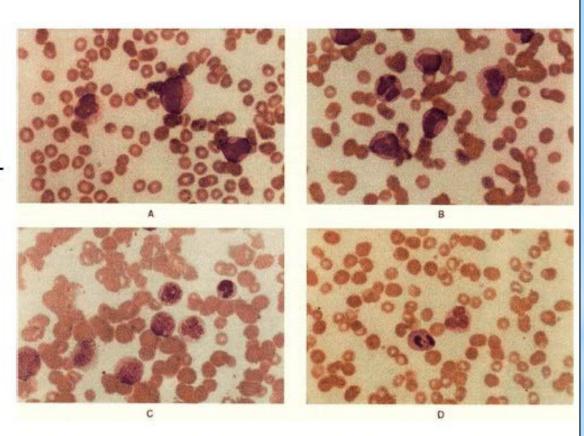
* Aggressive early care for APL

- * Early mortality (within days of diagnosis) ~5-10%
 - Bleeding
 - Bleeding
 - Intracranial bleeding
- * Start ATRA as soon as suspected
 - If wrong, no harm done
 - Do not wait for testing results to start (t(15;17))

- Long-term cure rate >95%
- ATRA/Arsenic
- Aggressive blood product transfusion to decrease bleeding risk

48

*


All-Trans Retinoic Acid

Tretinoin

Clinical response

- Associated with maturation of leukemic clone
- Expression of PML/RAR α decreased

WBC increases Reduced relapse

ATRA Toxicity

"APL Differentiation Syndrome"

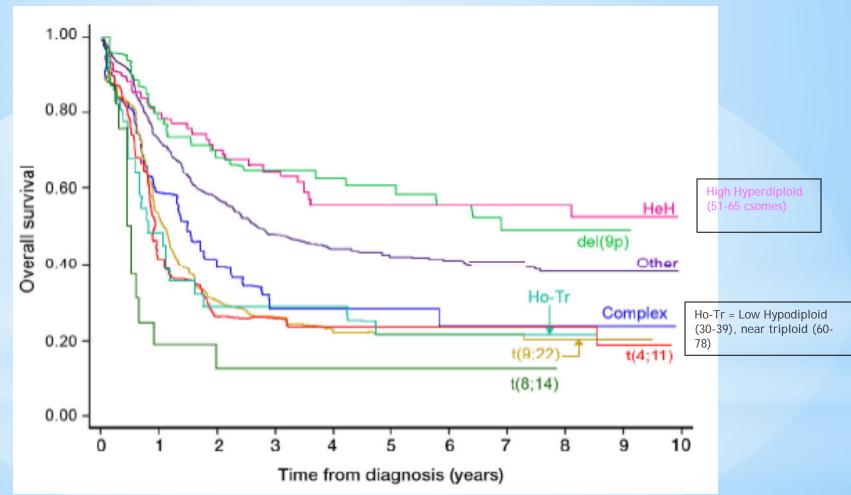
- Effusions, edema, ↑ Wt., fever, ↓BP
- Chemotherapy if WBC ↑
- Dexamethasone if symptoms

Consider prophylactic if WBC > 10

Pseudotumor Cerebri (venous thromboses)

Dry Skin, Mucus Membranes

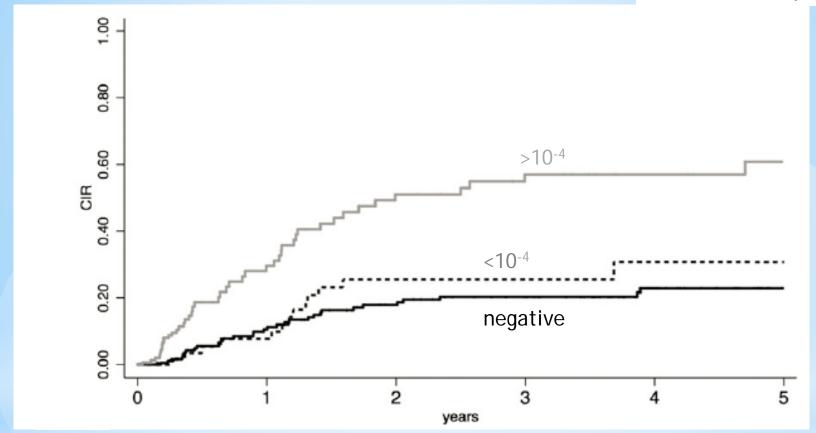
Hearing Loss


*Acute lymphoblastic leukemia/lymphoma (ALL)

- *Peak age at diagnosis 7yo
- *But diagnosis possible throughout life
- *Adolescent and young adult ALL
 - *Treat with a 'pediatric regimen'
 - * Anthracycline, steroid, asparaginase, vincristine, 6-MP, cyclophosphamide
- *Must administer intrathecal chemotherapy
 - *Without this 50% have CNS relapse

*Back to Philly

- *ALL can also have the Philadelphia Chromosome t(9;22)
 - *p190 instead of p210
 - * Respond to Imatininb/Dasatinib/Nilotininb/Ponatinib
 - * So always use these in Ph+ ALL


*Survival by Cytogenetic Subgroup: MRC UKALL XII/ECOG 2993

*What to do with the rest?

- *Cytogenetic changes without clear prognostic information
- *Standard-risk patients that respond in nonstandard manner
- *Risk stratification in UK ALL XII (adverse features)
 - *Ph+
 - * >35yo
 - *WBC >30k B cell or >100k for T cell
 - * More than 4 weeks for cytologic CR (MRD)

*MRD and risk of relapse

*Questions and Thanks

Matthew.ulrickson@bannerhealth.com

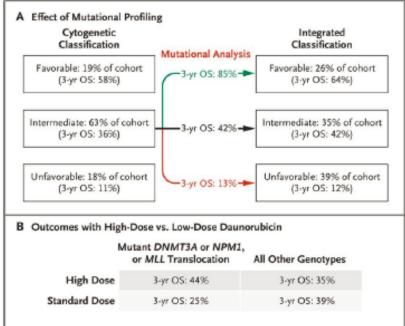
APL: Sanz Prognostic Factors

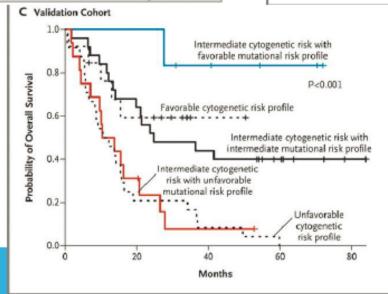
Low

WBC <10, Plt >40

Int

WBC <10, Plt <40


High


WBC ≥10

A Revised Risk Stratification

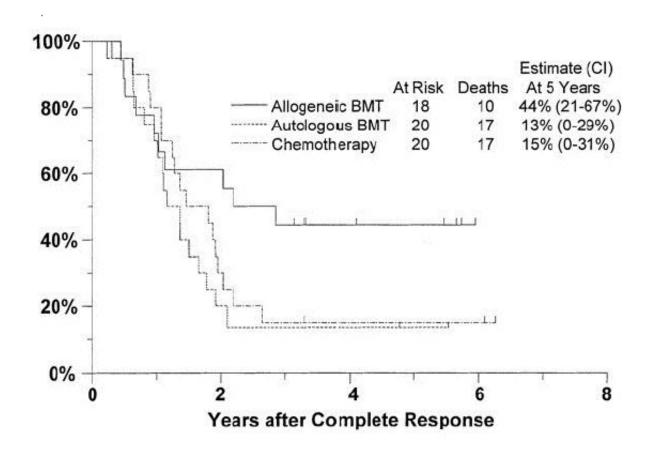
Cytogenetic Classification		Mutations	Overall Risk Profile
Favorable	Any		
	FLT3-ITD-negative	Mutant NPM1 and IDH1 or IDH2	Favorable
	FLT3-ITD-negative	Wild-type ASXL1, MLL-PTD, PHF6, and TET2	Intermediate
Normal karyo- type or inter-	FLT3-ITD- negative or positive	Mutant CEBPA	
mediate-risk ctyogenetic	FLT3-ITD-positive	Wild-type MLL-PTD, TET2, and DNMT3A and trisomy 8-negative	
lesions	FLT3-ITD-negative	Mutant TET2, MLL-PTD, ASXL1, or PHF6	
	FLT3-ITD-positive	Mutant TET2, MLL-PTD, DNMT3A, or trisomy 8, without mutant CEBPA	
Unfavorable	Any		

*

Molecular Markers and Prognosis in AML

Effect
fav
fav
fav (HDAC)
fav (MLL)

<u>Marker</u>	Effect
MLL	unfav t(9;11)
FLT3 ITD (Not TKD) (25	%) unfav
EVI1	unfav
IDH1/2 (33%)	unfav
MN1	unfav
WT1 (10%)	unfav
FL1	unfav
BAALC	unfav
CKIT	unfav (i16)
DNMT3A (18%)	unfav
ERG	unfav


TET2

unfav/fav

Thol et al. J Clin Oncol 2011;29:2889-2896 Metzeler K H et al. J Clin Oncol 2011;29:1373-1381 Neubauer et al. J Clin Oncol 2008;26:4603-4609 Becker et al. J Clin Oncol 2009;28:596-604 Shen et al. J Clin Oncol 2011;118:5593-5603 Green et al. J Clin Oncol 2010:28:2739-2747

Therapy of High Risk AML

Slovak et al. *Blood* 2000;96:4080

Integration of Cytogenetic & Molecular Data in Younger Pts

EFS > 75%

t (15;17)

Inv 16 , +22 Kit -

EFS 50-75%

Other inv 16, Kit -

T(8;21) with low WBC, Kit -

Normal karyotype, CEBPA +

Normal karyotype, FLT3-/NPM +

EFS 25-50%

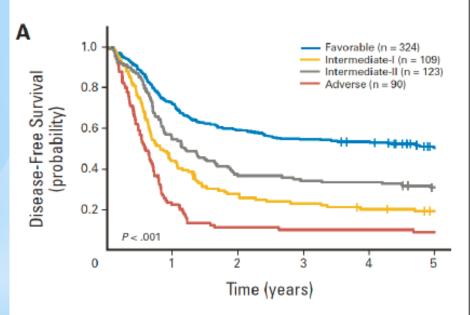
Inv 16, Kit +

T(8;21) with high WBC or Kit +

Normal karyotype FLT3-/NPM-

Normal karyotype FLT3+/NPM+

or –


Normal karyotype MLL1 PTD+

EFS < 20%

Others except -5/-7 as sole abnormality w/o AHD

Prognosis: European Leukemia Net

Table 1. European LeukemiaNet Standardized Reporting System for Correlation of Cytogenetic and Molecular Genetic Data in AML With Clinical Data¹²

Genetic Group	Subsets
Favorable	t(8;21)(q22;q22); RUNX1-RUNX1T1 inv(16)(p13.1q22) or t(16;16)(p13.1;q22); CBFB-MYH11 Mutated NPM1 without FLT3-ITD (normal karyotype) Mutated CEBPA (normal karyotype)
Intermediate-I	Mutated NPM1 and FLT3-ITD (normal karyotype) Wild-type NPM1 and FLT3-ITD (normal karyotype) Wild-type NPM1 without FLT3-ITD (normal karyotype)
Intermediate-II	t(9;11)(p22;q23); MLLT3-MLL Cytogenetic abnormalities not classified as favorable or adverse
Adverse	inv(3)(q21q26.2) or t(3;3)(q21;q26.2); RPN1-EVI1 t(6;9)(p23;q34); DEK-NUP214 t(v;11)(v;q23); MLL rearranged -5 or del(5q) -7 abnl(17p) Complex karyotype*

Abbreviations: AML, acute myeloid leukemia; ITD, internal tandem duplication. *Complex karyotype is defined as three or more chromosome abnormalities in the absence of one of the WHO designated recurring translocations or inversions: t(8;21), inv(16) or t(16;16), t(15;17), t(9;11), t(v;11)(v;q23), t(6;9), inv(3) or t(3;3).

