Primary Immune Deficiency: Overview

Sam Ahn, MD FAAAAI Allergy Asthma Clinic Assistant Professor, U of A College of Medicine

Immune System: Overview

Courtesy: Abbas and Litchman; Basic Immunology

Adaptive Immunity

Complement

Complement Cascade and Function

PID Overview

PID Overview

- Severe Combined Immune Deficiency (SCID)
- X-Linked Agammaglobulinemia (XLA)
- Wiskott-Aldrich Syndrome (WAS)
- Common Variable Immune Deficiency (CVID)
- Complement Deficiency
- Selective IgA deficiency

CASE 1

- 3 month old male hospitalized with pneumonia, failure to thrive
- No lymph nodes palpated
- CBC w/diff showed WBC 3.5, nl Hgb and plt counts
- Total lymphocyte 500/ microl

SCID

- 1% T-cells, 1% B-cells, 90% NK cells
- Gene testing shows mutation in *RAG1* gene
- SCID 1 in 58,000 births
- Numerous gene defects cause dysfunction in T cells with varying B and NK cells

SCID Gene Defects

T-B+NK- SCID		
X-linked SCID [¶] , common gamma chain (gamma-c)	IL2RG	
Janus kinase 3	ЈАКЗ	
T-B+NK+ SCID		
Interleukin-7 receptor alpha chain (CD127)	IL7RA	
Actin-regulating protein coronin 1A (CORO1A)	CORO1A	
CD3 chain components		
CD3 delta	CD3D	
CD3 epsilon	CD3E	
CD3 zeta	CD3Z	
CD45	PTPRC	
T-B-NK+ SCID		
Recombinase-activating genes 1 and 2	RAG1, RAG2	
Artemis	DCLRE1C	
DNA protein kinase catalytic subunit (DNA-PKcs)	PRKDC	
DNA ligase IV	LIG4	
Cernunnos/XRCC4-like factor (XLF)	NHEJ1	
T-B-NK- SCID		
Adenosine deaminase	ADA	
Reticular dysgenesis	AK2	

SCID – Clinical

- Recurrent severe infections
- Chronic diarrhea
- Failure to thrive
- Thrush
- No discernable lymph nodes
 MMR/Varicella may be fatal

SCID - Diagnosos

 Very low lymphocyte counts (<2000), especially T cells

 Hypogammaglobulinemia often found but not required

Genetic testing

SCID - Treatment

- Hematopoietic stem cell transplant may be curative if given early enough
- HCT given in first 3.5 months increased survival compared to given after (94% vs 70%)
- 5 year survival if given in first 3.5 months 94%
- Gene therapy for X-linked and ADA, promising

Case 2

- 12 month old male recurrent otitis
- Chronic high fevers
- Pseudomonas cellulitis
- CBC shows total lymphocytes 600/ microl

XLA

- Mutation in *BTK* gene, named after Colonel
 Ogden Bruton, described
 in 1952 as X-linked
- 1 in 190,000 male births
- Bruton Tyrosine Kinase is signal transduction molecule, promotes pre-B cell expansion

XLA - Clinica

 Recurrent bacterial infections, otitis, pneumonia, cellulitis

- Sepsis
- Recurrent enteroviral infections
- 50% develop symptoms by first year of age
- Maternal antibodies protect for the first few months of life
- Absence of tonsils (B-cell rich) is hallmark

XLA - Diagnosis

- Reduction in CD19+ B cells and all classes of antibodies (IgG/IgA/IgM)
- Deficient antibodies to all vaccines
- Gene defect in *BTK*

XLA - Treatment

- IV or SC replacement of IgG (IgM and IgA replacement not available)
- Substantial reduction in infections and hospitalizations
- Chronic antibiotics
- Very good life expectancy

Case 3

 10 month old male with disseminated Neisseria infection

 2 months prior had episode of Strep pneumonia

Normal CBC w/diffLow CH50

Complement Deficiencies

Complement Deficiencies and Disease Alternative Pathway

Pathway/Component	Disease	Mechanism
Factors B or D	Susceptibility to pyogenic (pus-forming) bacterial infections	Lack of sufficient opsonization of bacteria
C3	Susceptibility to bacterial infections	Lack of opsonization and inability to utilize the membrane attack pathway
C5, C6, C7 C8, or C9	Susceptibility to Gram- negative infections	Inability to attack the outer membrane of Gram- negative bacteria

Complement - Clinical

- C1 SLE
- C4 SLE
- C2 pyogenic infections with encapsulated bacteria
- C3 severe recurrent infections with encapsulated bacteria shortly after birth
- C5-C9 recurrent Neisseria infections

Complement - Diagnosis

 CH50 – Total hemolytic component (represent C1-C9)

If low, measure specific components

Recurrent pneumococcus, measure C3

- Recurrent Neisseria, measure C5-C9
 - C6 African American
 - C9 Asian
 - Autosomal recessive

Complement - Alternative

- Very rare
- Properdin
 Neisseria Meningitis
 High mortality
- Factor D
 - <5 cases</p>
 - Meningococcal sepsis
- Factor B
 - 1 case, severe pneumococcus

Mannose Binding Lectin (MBL)

- MBL < 500 ng/ml
- Does not correlate with disorder
- Low levels in healthy individuals
- Pneumococcal disease
- Treat infections

Complement - Treatment

- Pneumococcus and Meningococcus vaccines
- In theory, plasma infusions
 - Rarely done
 - Risk of antibody formation to missing component
 - Risk of bloodborne illness
 - Need for frequent infusions

Case 4

- 8 year old girl 3 years of sinusitis, 3 times a year
 - Pneumococcus cultured on several occasions
- Episode of Giardia when she was younger
- Type 1 Diabetes

IgA Deficiency

- 1 in 600 people, low IgA or deficient
- Most people asymptomatic and no workup is needed
- Primary found in respiratory and gastrointestinal mucosa
- Patients that are symptomatic, recurrent sinopulmonary infections
- Precise defect and inheritance pattern unknown

IgA Deficiency

 Not a lot of GI infections because IgM, but Giardia more common

20-30% have autoimmune disorders

- Graves
- Type 1 Diabetes
- Rheumatoid Arthritis
- ITP
- Thought to be from compromise of negative selection

IgA Deficiency - Diagnosis

- Low or absent serum IgA, with normal IgG
- Recurrent sinopulmonary infections
- Impaired antibody response: pneumococcus, measles, Hib, diphtheria, etc.

IgA Deficiency - Management

 Treat infections – if frequent, prophylactic antibiotics

• IVIG

- Only if evidence of lack of antibody response
- Does not replete IgA, but provides passive specific IgG antibodies

Rule out meds

 Cyclosporine, anticonvulsants, captopril, gold, thyroxine, sulfasalazine

Case 5

- 33 year old female presents with fever, chills, productive cough
- Found to have pneumonia
- Further history shows sinusitis 3-4 times a year
- CT for chronic cough shows bronchiectasis

Case 5

- Labs showed CBC with normal WBC, HgB, Plt, but decreased lymphocyte count
- IgG/IgA/IgM checked
 All lower than detectable limits
- Antibody studies show lack of titers to most vaccines (measles, varicella, tetanus, diphtheria, pneumococcus)
- Low CD 19+ B-cells, normal T cells

CVID

- Common variable immune deficiency
- Primary immune disorder where impaired B cell differentiation leads to impaired antibody production
- Heterogeneous clinical disorders
- Adults and children, 1:25,000-1:50,000
- Recurrent sinupulmonary infections

CVID - Diagnosis

- Low IgG AND low IgA and/or IgM
- Absent antibody response to most or all vaccines (pneumococcus, measle, varicella, tetanus, Hib, diphtheria, etc)
- T & B lymphocytes may be low or normal
- No specific genetic defect has been identified
 - Several gene defects associated, but none diagnostic of disease

CVID - Clinical

- Whole host of comorbidities
 - Autoimmune
 - ITP, AIHA, RA-like, biliary cirrhosis
 - Chronic lung disease (20%)
 - Chronic bronchiectasis
 - Granulomatous lung disease
 - Increased risk of malignancy
 - NHL (8%)
 - Gastrointestinal
 - Malabsorption

CVID - Treatment

- IV Q4weeks, IV More side effects Nursing required SC – Q1week, SC Less side effects More frequent SC – Q3-4weeks, SC Hyqvia • More volume
 - Single site

Case 6

 6 year-old boy, long standing eczema

 Further history reveals ITP at age 2

 Has had a few episodes of otitis

Normal CBC

 Elevated IgA, normal IgG and IgM

Wiskott-Aldrich Syndrome (WAS)

Rare X-linked disorder, 1:100,000

Defect in the WASp gene

- Crucial role in actin cytoskeleton remodeling
- Impacts site of interaction between T cells and APCs
- Eczema
- Thrombocytopenia
- Sinopulmonary infections (Bacterial and viral)
- Autoimmune AIHA, neutropenia, vasculitis

WAS - Diagnosis

- Mutation in WASp gene
- High IgA and IgE, normal IgG and IgM
- Decreased T cell number and function
- Lymphocytes devoid of microvillus projections
- Platelet count 20,000-50,000

WAS - Treatment

 Prophylactic Bactrim, Acyclovir for very low T cell counts

IVIG if evidence of antibody deficiency

Stem cell transplant can be curative

Gene therapy promising

Question #1

18 yo college sophomore is following up with you after hospitalization 2 weeks ago for meningococcal meningitis. HIV antibody was negative. He had an episode of meningococcal meningitis last year after starting school when an outbreak went through his dorm. He received the meningococcal vaccination when he was 15. He is otherwise healthy, and takes no medications. Physical exam today is unremarkable.

Which of the following is most likely to establish a diagnosis?

A: CH50 (total hemolytic complement level)

B: Meningococcal titers

C: Lymphocyte panel

D: IgG, IgM, IgA

Question #2

24 yo following up with you after an episode of pneumonia 6 weeks ago. She received the pneumococcal vaccine 5 years ago. She tells you that she gets 3-4 sinus infections every year. She also has a chronic productive cough that has never been worked up. Physical exam reveals bibasilar crackles. Review of her hospital chart indicates that HIV antibody is negative.

Which of the following is the most likely diagnosis?

- A: Complement deficiency
- **B: Selective IgA deficiency**
- C: CVID

D: XLA

Question #3

30 yo male comes to you after gastroenterologist found absent serum IgA for workup of celiac disease. Patient denies any severe or recurrent infections. IgG, IgM and IgG subclasses are normal. Antibody studies to all vaccines are normal.

What is the next step in treatment?

- A: Initiate IVIG therapy
- **B:** Prophylactic antibiotics

C: Revaccinate with pneumococcus and meningococcus

D: Careful observation

Thank You and Good Luck

