Calcium and Metabolic Bone Disease

Richa Bhattarai, MD

Endorcine Fellow, PGY-5

Special Thanks to : Ricardo Correa, M.D.

Objectives

Calcium distribution and homeostasis

Hyper and hypocalcemia

Osteoporosis

Calcium (Ca²⁺)

- Involved in :
 - Excitation- contraction coupling in various muscles, including the heart
 - Synaptic transmission
 - Platelet aggregation and coagulation
 - Secretion of other hormones via acting as secondary messengers
 - Bone rigidity and mineralization
 - Cell division

Distribution in the Body

- Total body Ca content in adults is about 1000 g
 - 98-99% exists as the hydroxyapatite (OH)₂ crystal in the mineral phase of bone.
 - 1-2% is found in soft tissue and the extracellular fluid (ECF) space including blood.
 - Plasma proteins bound: mainly albumin (40%)
 - 10 % bound with phosphate, sulphate & citrate
 - About 50 % free ionized state

Favus MJ, Bushinsky D, Lemann JJ 2006 Regulation of calcium, magnesium, and phosphate metabolism. In: Favus MJ, (ed). Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism, American Society for Bone and Mineral Research, USA; pp, 76-83

Calcium Fluxes

Serum Calcium

- Level maintained within very narrow range (8.5-10.5 mg/dl): measures bound to albumin
- Corrected for hypoalbuminemia: a decrease in calcium of 0.8 mg/dL for every 1 g/dL decrease in albumin

Corrected Ca =

Serum calcium + [(4 –albumin) x 0.8]

- Blood pH can alter the equilibrium constant of the albumin-calcium complex
 - Acidosis: decrease binding
 - Alkalosis: enhances binding

- When to check iCa:
 - Hyper/hypoalbuminuria
 - eg. multiple myeloma, liver disease, malnutrition, athletes on high protein diet
 - Hyperparathyroidism
 - PTH may decrease the binding of calcium to albumin and therefore increase ionized calcium at the expense of the protein-bound fraction
 - CKD (GFR <60 ml/min) with low bicarbonate/albumin
 - the total serum calcium concentration is not reliable, even if corrected for a low serum albumin

Calcium homeostasis

- s/Ca Regulated by: PTH, VIT D, Ca ion itself and PO4
- PTH and Vit D regulate Ca via effects on bone, kidney, and GIT
- Ca itself regulates its own blood levels
 - Acting via CaSR in parathyroid gland to inhibit PTH secretion
 - CaSR in loop of henle: stimulate renal Ca excretion

Parathyroid hormone

- Secreted by 4 parathyroid glands (12-15% population have 5th gland)
- Provides minute minute regulation of serum ionized Ca
- Also involved in PO4 homeostasis
- Ca homeostasis by PTH: 3 principal target organs:
 - Bone: increase osteoclastic activity \rightarrow bone resorption $\rightarrow \uparrow$ s/Ca
 - Intestinal Mucosa (indirect effect): via ↑renal production of 1,25 OH D→
 ↑Intestinal Ca absorption in small intestine
 - Kidney: Ψ Urinary Ca excretion \rightarrow stimulate Ca reabsorption in distal tubule
- **Regulated** by: f.b from s/Ca→ sense iCa in parathyroid cells by CaSR
 - Low iCa²⁺ : stimulates PTH release
 - High iCa²⁺ : inhibits PTH release

Normal Bone Physiology

- Bone is composed of tough organic matrix that is strengthened by deposits of calcium salts.
 - The major crystalline salt is hydroxyapatite
 - Comprised of calcium and phosphate
- 3 major cells involved in bone remodeling
 - Osteoblasts "bone forming" cells that can differentiate into osteoclasts
 - Osteocytes- are bone cells that make type 1 collagen
 - Osteoclasts "bone resorbing" cells

PTH & Bone Resorption

- PTH acts indirectly to **↑**osteoclast formation.
- It binds to osteoblasts → increased expression of RANK-L → binds to the RANK-L receptor on osteoclast precursors → increase in osteoclasts
- Osteoclasts bind to the bone surface and cause demineralization of the bone→ breakdown of hydroxyapatite → ↑ in Ca & PO4

PTH and Renal Tubules

- Has direct effects on tubular reabsorption of Ca & PO4
 - Increases reabsorption of calcium in the distal convoluted tubule
 - Inhibits reabsorption of phosphate in the proximal tubule
 - Stimulates synthesis of 1-alpha hydroxylase in the proximal tubules (catalyzes calcidiol → calcitriol)
 - Decreases activity of 24-hydroxylase (which would normally inactivate calcitriol)

Vitamin D

- Prohormone that regulates Ca and PO4 homeostasis
- Major forms (inactive)
 - D2 Ergocalciferol (plants, yeast)
 - D3 Cholecalciferol (UV rays, animal skin)
- Actions of Vit D active form (1,25 OHD)
 - Gut: 1 Intestinal Ca & PO4 absorption
 - Bone: Important in bone formation & resorption
 - Kidney: **↑**Ca & PO4 reabsorption
 - inhibits the synthesis and secretion of PTH, providing -f.b regulation of 1,25-dihydroxyvitamin D (calcitriol) production.

Calcitonin

- Hormone secreted by parafollicular C cells of the thyroid
 - Increases in response to hypercalcemia
 - Secretion is inhibited in response to hypocalcemia

• Main action

- Inhibits osteoclast-mediated bone resorption → ↓in serum calcium and phosphate
- **V**renal tubular reabsorption of calcium and phosphate
- **V** gut absorption of phosphate

Summary of Net Effects

• PTH

- 🛧 calcium
- **V** phosphate
- Calcitriol (Active Vitamin D)
 - 🛧 calcium
 - **↑** phosphate
- O Calcitonin
 - 🕹 calcium
 - **V** phosphate

Optimal Ca & Vit D

- Vitamin D
 - ~ 600-800 IU daily
 - no consensus on the optimal 25(OH)D concentration for skeletal or extra-skeletal health.
 - serum 25(OH)D concentration of 20 ng/mL (50 nmol/L) is sufficient for most individuals
- Calcium
 - 1,000-1,200 mg elemental calcium daily

Sources of Vitamin D

Food	Serving Size	International Units of Vitamin D
Cod Liver Oil	One tablespoon	1360
Swordfish	Three ounces	566
Salmon	Three ounces	477
Canned Tuna in Water	Three ounces	154
Orange Juice with Vitamin D	One cup	137
Milk with Vitamin D	One cup	115-124
Yogurt with Vitamin D	Six Ounces	80
Cooked Beef Liver	Three ounces	42
Eggs (Yolk)	One	41

Sources of Calcium

	-	Compound		Elemental Ca
Compound	Brand Name	Content (mg)	% Ca	(mg)
Calcium Acetate	Phoslo™	667	25%	167
Calcium	Chooz [™] (Gum)	500	40%	200
Carbonate	TUMS™			
	TUMS EX™	750	40%	300
	TUMS Ultra™	1,000	40%	400
	LiquiCal	1,200	40%	480
	CalciChew™	1,250	40%	500
	CalciMix™			
	Oscal 500™			
	TUMS 500™			
	Caltrate 600™	1,500	40%	600
	NephroCalci [™]			
Calcium Citrate	CitraCal™			
Calcium Acetate	MagneBind [™] 200	200 Mg carbonate		(Mg = 57 mg)
+ Magnesium		450 Ca acetate		113 mg
Carbonate	MagneBind™	300 Mg carbonate		(Mg = 85 mg)
	-	300 Ca acetate		76 mg

https://draxe.com/top-10-calcium-rich-foods/

Top 10 Calcium Rich Foods

1) Raw Milk 1 cup: 300 mg (30% DV)

2) Kale (cooked) 1 cup: 245 mg (24% DV)

3) Sardines (with bones) 2 ounces: 217 mg (21% DV)

4) Yogurt or Kefir 6 oz: 300 mg (30% DV)

5) Broccoli 1 ½ cup cooked: 93 mg (9% DV)

6) Watercress 1 cup: 41 mg (4% DV)

7) Cheese 1 oz: 224 mg (22% DV)

8) Bok Choy 1 cup:74 mg (7% DV)

9) Okra 1 cup: 82 mg (8% DV)

10) Almonds 1 oz: 76 mg (8% DV)

Hypercalcemia

Definition

- Normal serum calcium: 8.5 to 10.5 mg/dl
- Mild hypercalcemia: >10.5 but ≤ 12 mg/dl
- Moderate hypercalcemia: >12 but ≤ 14 mg/dl
- Severe hypercalcemia: >14 mg/dl

Etiologies

PTH Dependent

- Primary hyperparathyroidism
- Familial Hypocalciuric Hypercalcemia
- Lithium Toxicity
- Tertiary Hyperparathyroidism

PTH Independent

- Hypercalcemia of malignancy
 - Local osteolytic
 - Humoral hypercalcemia of malignancy
- Granulomatous disease
- Hyperthyroidism/ Thyrotoxicosis
- Adrenal Insufficiency
- Thiazide diuretics
- Vitamin D & Vitamin A intoxication
- Milk Alkali Syndrome (intake of >5 g Ca/day)
- Immobilization
- Renal Failure
 - ARF
 - CRF with aplastic bone disease

Clinical manifestations

"stones, bones, groans, psychiatric overtones"

- "Stones": Kidney stones
- "Bones": Bone pain, osteoporosis, fractures, loss of height, deformities
- "Groans": Muscle weakness, N/V/abdominal pain, constipation, polyuria, polydipsia
- "Psychiatric overtones": Anxiety, depression, cognitive dysfunction, lethargy
- In addition: Renal insufficiency, pancreatitis, cardiac arrhythmias

Variety of Clinical Presentation

- Mild Hypercalcemia: calcium <12 mg/dL
 - Asymptomatic or nonspecific symptoms: constipation, fatigue, depression
- Moderate Hypercalcemia: calcium 12-14 mg/dL
 - Tolerated well chronically
 - Acute elevations → polyuria, polydipsia, dehydration, anorexia, and changes in mental status

• Severe Hypercalcemia: calcium >14 mg/dL

Worsening of symptoms

Approach to hypercalcemic patient

- First, distinguish hemoconcentration or rare Ca-binding paraproteinemia or thrombocythemia-associated hypercalcemia (release of intracellular Ca in vitro) from a true increase in s/ iCa-> measure iCa, repeat total Ca with albumin
- Always differentiate between PTH mediated and non PTH mediated
- Most common: Primary Hyperparathyroidism
 - Out patient : More than 90 % cases hypercalcemia
 - Mild, stable, or long duration hypercalcemia but otherwise healthy
- III/ hospitalized patients: 50 % malignant hypercalcemia
 - Evidence of malignant disease

Initial Workup

- H & P (kidney stones, fractures, weight loss, PUD, back/bone pain, medications, FHx)
- Compare previous labs -> ? Chronicity
- Labs: Electrolytes, BUN, Cr, PO4, ALP, 25-OH Vit D, s/albumin, s/Ca, iCa (if applicable), PTH
- PTH-> caution can be inappropriately normal
- EKG look for short QT, prolonged PR

Work up algorithm

© 2018 UpToDate, Inc. and/or its affiliates. All Rights Reserved.

PTH Dependent Hypercalcemia work up: PHPT Vs FHH

© 2018 UpToDate, Inc. and/or its affiliates. All Rights Reserved.

Treatment

• Supportive measures:

- Aggressive IVF: isotonic initial rate of 200-300 ml/h; then adjusted to maintain UOP at 100-150 ml/h
 - Careful with CHF or Renal Failure: can use loop diuretics
- Telemetry: short QT, prolong PR

• Medical Therapy:

- Calcitonin
- Bisphosphonates
- Denosumab
- Steroids

Calcitonin

- Inhibits osteoclast resorption of bone and increases renal excretion of calcium and phosphate
- Usually used as a bridge to bisphosphonates
- Benefit- works quickly
 - Lowers serum calcium by 1-2 mg/dL within four to six hour
- Con- effect wanes after 48 hours (tachyphylaxis)
- **Dose**: Initial: IM or SubQ: 4 units/kg every 12 hours; may increase up to 8 units/kg every 6 to 12 hours
- S/E: generally well tolerated; only transient N/V, abdominal cramps, flushing, & local skin rxn

Bisphosphonates

- Drug of choice: inhibit bone resorption
 - s/Ca usually decline within 24 h; lowest in a week after single infusion
 - Duration of response: 1-2 wks to several months
- FDA approved: Pamidronate and Zoledronate
 - ZA: 4 mg IV over 15 minutes (preferred: more potent)
 - PA: IV 60 to 90 mg over two hours
- Don't use in Milk Alkali Syndrome: induce postRx Hypocalcemia
- **Caution** with renal Failure (C/I: GFR < 30 ml/min)
- S/E: local pain or swelling at the infusion site, flu-like symptoms, transient lymphopenia, mild hypophosphatemia or hypomagnesemia, hypocalcemia, ONJ

Denosumab

- Monoclonal Ab to RANK-L→ inhibits Osteoclasts
- For malignancy associated or bisphosphonate refractory hypercalcemia
- Alternative for renal failure
- Dosing: 60 mg SQ weekly for 4 wks and then 60 mg/month
- Small risk of ONJ

Glucocorticoids

- Used in patients where hypercalcemia is NOT d/t increased bone resorption. (Vit D dependent Hypercalcemia)
 - Excessive Ca intake
 - Vit D toxicity
 - Chronic Granulomatous diseases e.g Sarcoidosis, Lymphoma etc
 - Granulomas have 1-alpha hydroxylase so increase production of calcitriol
- MOA: decrease calcitriol production in mononuclear cells in lungs and lymph nodes
- IV or oral; oral dose usually 20-40 mg/day
- Takes 2-5 days to act

Other options

- Dialysis: last resort
 - Severe renal insufficient, with or without complicating heart dz
- Calcimimetic: Cinacalcet
 - Mimics axn of Ca on tissues → increased sensitization of CaSR
 - May be effective in some patients with parathyroid cancer

Hypocalcemia

Definition

- Serum Ca below lower limit of normal
- Common cutoffs:
 - Adults: total Ca < 8.4 mg/dl; iCa: < 4.4 mg/dl
 - Children: total Ca < 8.5 mg/dl; < 7 mg/dl in preterm infant; iCa < 4 mg/dl

Pseudohypocalcemia

• Hypoalbuminemia

- Total calcium may vary but iCa remains stable
- e.g Volume overload, malnutrition, nephrotic syndrome, chronic illness
- Acid base disorders: although albumin level may be normal, change in blood pH can alter equilibrium constant of albumin-Ca complex
 - Acidosis: decreased binding of albumin-calcium
 - Alkalosis: increased binding of albumin-calcium
 - e.g: critically ill or post surgical patients
 - Check iCa

Etiologies

Low PTH (Hypoparathyrodism)

- Genetic disorders
 - Abnormal parathyroid gland development
 - Abnormal PTH synthesis
 - Activating mutation of CASR (normal or low PTH)
- Postsurgical (thyroidectomy, parathyroidectomy, radical neck dissection)
- Autoimmune
 - APS syndrome type I or isolated hypopara d/t activating AB to CASR
- Radiation destruction
- Infiltrative dz
- Hungry bone syndrome (postparathyroidectomy)
- HIV infection

High PTH (secondary hyperpara in response to hypocalcemia)

- Vit D deficiency or resistance
- PTH resistance
 - Missense mutation in PTH
 - Pseudohypoparathyroidism
 - Hypomagnesemia
- Renal disease
- Loss of Calcium from circulation
 - Hyperphosphatemia
 - Tumor lysis syndrome
 - Acute pancreatitis
 - Osteoblastic metastasis
 - Acute respiratory alkalosis
 - Sepsis or acute severe illness

Drugs: Bisphosphonates, calcitonin, denosumab (esp with Vit D deficiency); Cinacalcet; Ca chelators (EDTA,citrate, Phosphate); Foscarnet, phenytoin, fluoride poisoning

Clinical Presentation

- Mild cases: asymptomatic
- Classic Symptoms→ Neuromuscular irritability: perioral paresthesias, tingling of fingers and toes, tetany
- Severe cases: prolonged QT, arrythmias, seizures, laryngospasm

Chronic cases: dry scaly skin, coarse brittle hair, chronic pruritis Cataracts, delayed tooth eruption, hypoplastic tooth enamel Edema

Short 4th or 5th metacarpals (Albright Hereditary Osteodystrophy)

Diagnosis

- Confirm Hypocalcemia: repeat labs → total Ca with albumin or iCa
 Corrected Ca = Serum calcium + [(4 albumin) x 0.8]
- History
- Supportive labs: PTH, PO4, BUN/Cr, Mg, Vit D (25-OHD & 1,25-OHD), ALP

	Normal or low PTH	High PTH
Normal or low PO4	Suspect hypomagnesemia or CASR defect	 Suspect Vit D deficiency If 25OHD normal: suspect end- organ resistance (Vit D dependent rickets or sclerotic bone metastases)
High PO4	Suspect Hypoparathyroidism	 Suspect renal dysfunction If normal BUN/Cr, 25-OHD & ALP suspect Pseudohypoparathyrodism

Additional Testing

 Elevated ALP: Osteomalacia 2/2 severe Vit D def & secondary hyperparathyroidism; can occur with Osteoblastic Bone mets

• Amylase

• Urine creatinine to Calcium ratio

- low urinary calcium with untreated hypoparathyroidism or Vit D def
- Normal PTH with hypercalciuria: may indicate AD hypercalciuria
- Urine creatinine to Mg ratio: hypomagnesemia d/t renal loss
- X-ray of wrist or knee: rickets (cupping & fraying of metaphyses)
- ECG: prolonged QT, heart block
- Genetic testing

Treatment

- Acute/Symptomatic and asymptomatic with corrected Ca < 7.5 mg/dl: Urgent Rx
 - IV Calcium bolus:
 - 10 ml of 10% Ca-gluconate in 50 ml 5% dextrose: over 10 min; repeat until symptoms resolve
 - Followed by IV infusion until patient receiving an effective regimen of oral Ca and Vit D
 - Dilute 10 amps of 10% Cagluconate in 1 L of D5W or NS: infusion 50 ml/h
 - Goal to achieve s/Ca at lower end of normal
 - EKG monitoring

- Asymptomatic and Chronic Hypocalcemia:
 - Ca regimen: 1.5-2 gm of elemental Ca in divided doses
 - CaCO3: taken with food, 40% elemental Ca
 - Ca-citrate: not dependent on food for absorption, ~20% elemental Ca → preferred if GI upset with CaCO3 or h/o kidney stones
 - Vit D regimen:
 - Vit D def: ergocalciferol or cholecalciferol
 - Hypopara, pseudohypopara, or Vit D dependent rickets: calcitriol or alfacalcidol

Other consideration for treatment

• For Hypoparathyroidism

- Calcitriol 0.25 to 0.5 mcg twice daily and oral Ca (1-4 g elemental CaCO3 daily in divided doses)
- Correct Concurrent Hypomagnesemia: IV MgSO4 for symptomatic Hypomagnesemia (target > 1 mg/dl); oral for asymptomatic mild – mod hypomagnesemia
- **R-PTH:** recombinant PTH for refractory chronic Hypoparathyroidism
- Thiazide diuretics: reduce urinary Ca-excretion by enhancing distal renal tubular reabsorption; esp in Autosomal Dominant Hypocalcemia (activating mutation of CaSR gene)

Treatment

© 2018 UpToDate, Inc. and/or its affiliates. All Rights Reserved.

Follow up for Chronic Hypocalcemia

- Depends on underlying cause
- Hypoparathyroidism:
 - Goal: relieve symptoms and maintain s/Ca in low-normal range
 - Monitor levels q 3-6 months once stabilized
 - Monitor urinary calcium excretion annually & reduce Vit D dose if elevated → risk of Nephrocalcinosis with hypercalciuria

Osteoporosis

Definition

- Systemic skeletal disease characterized by Low bone mass, microarchitectural disruption, increased skeletal fragility, resulting in decreased bone strength and an increased risk of fracture
 - Most affected sites: hip, spine, & wrist
- Dual-energy X-ray absorptiometry (DXA): standard criterion for evaluation of BMD
 - T score: value compared with that of control subjects who are at their peak BMD
 - **Z-score**: value compared with that of persons matched for age and sex
 - Used for premenopausal women
 - Men younger than 50 y
 - Children

Epidemiology & Pathogenesis

- Prevalence in adults aged \geq 50 years in United States
 - > 10 million persons overall
 - > 33 million have low bone density at hip
- Healthy bone: bone resorption (osteoclast cells) is balanced by bone formation (osteoblast cells)
- Bone loss occurs when bone resorption outpaces bone formation
- Primary OP: a/w aging & sex steroid deficiency
- Secondary OP: bone loss from specific causes

Risk Factors

- Aging
- Female Gender
- Postmenopausal/Estrogen deficiency
- Caucasian or Asian race
- Thin body habitus/ low BMI
- Positive Family History
- Personal h/o fracture as an adult
- Cigarette smoking
- Excessive Alcohol consumption (≥3 drinks/day)

- Immobility
- Low dietary calcium/Vit D, excess Vit A intake
- Malabsorption
- Chronic Inflammation & other medical conditions: RA, SLE, liver dz, DM, COPD, HIV
- Connective tissue disorders
- Endocrinopathies
- Medications: long term Steroids, Phenytoin, Phenobarbital, Li+, PPI, TZDs, long term heparin, aromatase inhibitors, Chemotherapy

Clinical Presentation

- Asymptomatic until fracture occurs
- Loss of height
- Acute pain followed by minor trauma
- Limited ROM
- Decreased weight bearing
- May have issues with balance

- Incidental radiographic vertebral Fx
- Fracture at certain areas most likely to be d/t OP:
 - Femoral neck fx
 - Pathologic fx of vertebrae
 - Distal radius fx
- Detected on screening

Diagnosis based on DXA scan (WHO criteria)

- T-score: ≥ -1 SD considered Normal
- T-score: -1 to -2.5 SD indicates Osteopenia
- T-score: ≤ -2.5 SD indicates Osteoporosis
- T-score: ≤ -2.5 SD with fragility fracture(s) indicates
 Severe osteoporosis
- Z-score: ≤ -2.0 SD: below the expected range for age
- Z-score: > -2.0 SD: within the expected range for age

Diagnosis and Screening

- Clinical Dx: fragility fx regardless of any test results
- Screening DXA scan
 - All women \geq 65 years old, and all men \geq 70 years old
 - postmenopausal women < 65 years old, peri-menopausal women, and men aged 50-69 years with clinical risk factors for fracture
 - any adult with fracture after age 50 years
 - any adult with condition (such as rheumatoid arthritis) or use of medication (such as glucocorticoids ≥ 3 months) associated with low bone mass or bone loss

FRAX

- Clinical tool for assessment 10 year probability of hip fx or major osteoporotic fx
- Can be used without BMD: based solely on risk with consideration of treatment
- With low BMD but not in osteoporotic range→ to guide for need for therapy
- MOF \geq 20%, Hip fx \geq 3%

Home Calculation T	ool V Paper Chart	s FAQ	References	English
alculation Tool				
ease answer the questions below to calc Country: US (Caucasian) Name/ID:	ulate the ten year probabili	ty of fracture with BMD. About the risk facto	rs	
Questionnaire: 1. Age (between 40 and 90 years) or Date of Birth Age: Date of Birth: Y: M: D: 2. Sex Male Fe	10. Secondary osteopo 11. Alcohol 3 or more 12. Femoral neck BMD smale Select BMD	orosis units/day O (g/cm ²)	Pot	aight Conversion unds 🔸 kg Convert
B. Weight (kg) E. Height (cm) E. Previous Fracture ONO C. Parent Fractured Hip ONO C	Clea) Yes) Yes	ar Calculate	He	hes b cm
7. Current Smoking 8. Glucocorticoids O No () Yes) Yes			06053927

https://www.sheffield.ac.uk/FRAX/tool.aspx

Vertebral Fracture Assessment (VFA)

- Densitometric spine imaging to detect verterbral fx.
- In women ≥ 70 y, men ≥ 80 y whose BMD T-score at the spine, total hip, or femoral neck is ≤ -1.0
- In women 65-69 & men 70-79 whose BMD T-score at spine, total hip, or femoral neck ≤ -1.5
- Postmenopausal women & men ≥ 50 with specific risk factors:
 - Low trauma fracture
 - Historical height loss ≥ 1.5 inches (4 cm)
 - Prospective height loss of ≥ 0.8 inches (2 cm) since previously documented height measurement
 - Recent or ongoing long-term glucocorticoid treatment

Laboratory Evaluation

- Biochemistry: Ca, PO4, albumin, Creatinine, liver enzymes including ALP, electrolytes
- 25-OHD
- CBC
- Other labs:
- SPEP, UPEP
- PTH, TSH
- 24 h urine calcium and creatinine
- Celiac screen, 24 h UFC
- Serum and urine markers of bone turnover: not routinely used in clinical practice, may be helpful in monitoring response to therapy

Treatment

• Supportive measures:

- **Calcium:** dietary preferably; if not then supplement total 1000-1200 mg/day
- Vit D: 800-1000 IU daily; may need higher dose, target Vit D > 30 ng/ml
- Regular weight bearing (e.g walking, jogging, Tai Chi, stair climbing, dancing, tennis) and muscle strengthening exercise (yoga, Pilates)
- Fall precautions
- Smoking Cessation & avoiding excess alcohol intake

Step 1: Estimate calcium i	ntake from calciur	n-rich foods ^a	
Product	# of servings/day	Estimated calcium/serving, in mg	Calcium in mg
Milk (8 oz.)		×300	=
Yogurt (6 oz.)		×300	=
Cheese (1 oz. or 1 cubic in.)		×200	=
Fortified foods or juices		×80 to 1,000 ^b	=
			Subtotal =
Step 2: Add 250 mg for nondairy sources to subtotal above			+250
			Total calcium, in mg =

Pharmacologic Therapy

- Choice of drug: based upon efficacy, safety, cost, convenience and other patient related factors
 - Bisphosphonates
 - Denosumab
 - Teriparatide
 - Estrogen agonist/antagonist

Maintain normal s/Ca and Vit D level prior

Bisphosphonates

- 1st line drug of choice: effective, low cost, known long term safety data
- Alendronate or risedronate: both reduce vertebral and hip Fx
 - Alendronate: 70 mg PO weekly; Risedronate: 35 mg PO weekly
 - Ibadronate: 150 mg PO monthly; 3 mg IV q3mo (reduce vertebral fx)
 - **Zolendronate**: 5 mg IV yearly (reduce vertebral, hip and non vertebral fx)
- C/I:
 - Oral: Esophageal disorders, bariatric sx pts with surgical anastomosis (Rouxen-Y bypass)
 - CKD eGFR < 30 ml/min

Denosumab: RANKL inhibitor

- Preferred for: high risk for fx, older pts who have difficulty taking oral or with markedly impaired renal function; intolerant or unresponsive to Bisphosphonates
- Reduce incidence of new vertebral, hip & nonvertebral fx in postmenopausal women→ concern for increased risk of vertebral fx after discontinuation of therapy
 - Advised alternative therapy after discontinuation
- Dosing: 60 mg SQ q6month

Anabolic agents: PTHrP analog

- Teriparatide & abaloparatide
- Stimulate bone formation & activate bone remodeling
- Preferred for: severe osteoporosis with high fx risk; OP with intolerance to bisphosphonates or with C/I to bisphosphonates; who fail other therapies i.e fx with loss of BMD in spite of compliance to therapy
- Dosing: 20 mcg SQ OD: total max duration 2 yrs
- Bone loss with rapid once stopped \rightarrow initiate alternative Rx
- S/E: leg cramps, nausea, dizziness
- C/I: with increased risk of Osteosarcoma (Paget's dz, Prior Skeletal radiation), bone mets, Hypercalcemia, h/o Skeletal malignancy

SERMS: Raloxifene

- Reduce risk of vertebral fx
- Indicated for reduction in risk of invasive breast cancer in postmenopausal women with OP
- Dose: 60 mg PO OD
- S/E: high risk of VTE, hot flashes, leg cramps

References:

- Cosman F et al. Clinician's Guide to Prevention and Treatment of Osteoporosis. Osteoporos Int 2014; 25(10): 2359-2381
- Endocrine Society CPG:OP in men 2012
- ACP guideline Osteoporosis 2017
- Dynamed.com
- Uptodate.com
- Medscape.com
- Williams Textbook of Endocrinology 13th edition