## Radiation Oncology 101:

A Whole Field, 120 Years, and 100's of Diseases in Under 30 min

Lauren Daniel Stegman, MD, PhD

Palo Verde Cancer Specialists & Phoenix Cyberknife







## Agenda

- Rad Onc as a Career: Advertisement for the Specialty.
- Uses of Radiotherapy in Clinical Medicine.
- Radiobiology 101.
- Radiation Physics 001.
- Radiation Treatment Modalities including Radiosurgery and Proton Therapy
- Patient Experiences through Treatment / Case Vignettes





# Why am I a Rad Onc?

- 85 yo woman admitted with 1 week of inability to walk, bowel and bladder incontinence after three months of increasing back pain.
  - IDC, 1.5 years prior: pT3 pN3a (ER/PR 25%, Her2-)
  - Anastrozole / Femara / Tamoxifen intolerant due to "joint aches, back and shoulder pain"







### Pre XRT Paralyzed / Incontinent

3.5 years Post XRT Ambulatory / Continent Living Independently







# Why am I a Rad Onc?

- I can cure many patients on my own.
- I relieve symptoms for many of those I cannot cure.
- Cancer care requires teamwork.
- I have the time to get to know my patients well, and form close relationships with them during critical and emotional milestones in their lives.
- I treat children and adults.
- I don't just write prescriptions, I do procedures.
- I see fascinating biology and pathology each day.
- Our field strives for evidence-based care.
- It mixes art and science with rapidly advancing technology.





### Use of Radiation Therapy

- First effective non-surgical anti-cancer treatment.
- Still the single most potent anti-cancer "drug".
- 60-70% of all cancer patients will receive RT at some point in the course of their disease.
- Utilization is estimated to increase by 20% between 2010 and 2020.

The Future of Radiation Oncology in the United States From 2010 to 2020: Will Supply Keep Pace With Demand? Benjamin D. Smith, Bruce G. Haffty, Lynn D. Wilson, Grace L. Smith, Akshar N. Patel, and Thomas A. Buchholz

VOLUME 28 · NUMBER 35 · DECEMBER 10 2010

#### JOURNAL OF CLINICAL ONCOLOGY

|                         | No. of I<br>Receiving<br>The | Patients<br>Radiation<br>rapy | % Increase in Demand<br>for Radiation Therapy<br>From 2010 to 2020 |  |
|-------------------------|------------------------------|-------------------------------|--------------------------------------------------------------------|--|
| Tumor Site              | 2010                         | 2020                          |                                                                    |  |
| Total                   | 470,000                      | 575,000                       | 22                                                                 |  |
| Breast (invasive)       | 103,000                      | 119,000                       | 15                                                                 |  |
| Prostate                | 91,000                       | 123,000                       | 35                                                                 |  |
| Lung                    | 77,000                       | 96,000                        | 25                                                                 |  |
| Oral cavity and pharynx | 21,000                       | 25,000                        | 18                                                                 |  |
| Breast (in situ)        | 20,000                       | 23,000                        | 15                                                                 |  |
| Colorectum              | 19,000                       | 23,000                        | 22                                                                 |  |
| Esophagus               | 19,000                       | 23,000                        | 22                                                                 |  |
| Thyroid                 | 15,000                       | 16,000                        | 10                                                                 |  |
| CNS                     | 12,000                       | 14,000                        | 16                                                                 |  |
| Non-Hodgkin's lymphoma  | 11,000                       | 13,000                        | 18                                                                 |  |
| Uterus                  | 11,000                       | 13,000                        | 22                                                                 |  |
| Larynx                  | 9,300                        | 12,000                        | 24                                                                 |  |
| Cervix                  | 7,000                        | 8,100                         | 16                                                                 |  |
| Pancreas                | 6,000                        | 7,500                         | 25                                                                 |  |
| Stomach                 | 5,300                        | 6,800                         | 27                                                                 |  |
| Myeloma                 | 4,700                        | 5,800                         | 25                                                                 |  |
| Bladder                 | 3,200                        | 3,900                         | 24                                                                 |  |
| Hodgkin's lymphoma      | 3,200                        | 3,300                         | 6                                                                  |  |
| Testis                  | 3,000                        | 3,000                         | 2                                                                  |  |
| Kidney                  | 2,500                        | 3,100                         | 21                                                                 |  |
| Melanoma                | 1,500                        | 1,800                         | 17                                                                 |  |
| Leukemia                | 1,400                        | 1,600                         | 11                                                                 |  |
| Liver                   | 920                          | 1,200                         | 26                                                                 |  |
| Ovary                   | 380                          | 440                           | 16                                                                 |  |
| All other sites         | 24,000                       | 29,000                        | 19                                                                 |  |





# Uses of Radiation Therapy

| Use            | Definition                                                                                                                     | % Practice |
|----------------|--------------------------------------------------------------------------------------------------------------------------------|------------|
| Definitive     | Alone or in combination with sensitizers<br>(cisplatin, 5FU, taxanes, Erbitux, androgen<br>deprivation, etc.) to cure a cancer | 33%        |
| Adjuvant       | Before or after surgery (or less often<br>chemotherapy) to kill regional microscopic<br>disease for cure                       | 33%        |
| Palliative     | Non-curative therapy to reduce or prevent symptoms from incurable cancer                                                       | 33%        |
| Benign Disease | Non-cancerous conditions                                                                                                       | 1%         |





# Uses of RT – (NEO)ADJUVANT

ADJUVANT radiation is generally only given when risk of local/regional relapse after surgery or chemotherapy is:

- 1.  $\geq$  15% or would be very morbid
- 2. difficult or morbid to salvage
- 3. associated with cancer-specific mortality
- 4. supported by results of Phase 3 RCTs
- 5. "sanctuary" sites where chemotherapy cannot penetrate (brain / testes)
- 6. bulky disease

Generally, RCTs of adjuvant radiotherapy show:

- > 50% RELATIVE REDUCTION of risk of locoregional relapse
- 5-15% ABSOLUTE IMPROVEMENT in overall survival





## Uses of RT: Definitive Radiotherapy

- Brain Tumors:
  - Meningiomas, Schwannomas, Germinomas
- Head and Neck Cancers:
  - **Oropharynx**, Larynx, Oral, Nasopharynx→Hypopharynx, Nasal Cavity
- Chest:
  - Lung, Esophagus
- GI:
  - Pancreas, Gallbladder, Bile Ducts, Anal
- GU:
  - Prostate, Penis, Urethra, Bladder
- GYN Cancer:
  - Cervix, Vagina, Vulvar, Uterine
- Non-melanoma Skin Cancer
  - Particularly on the face
- Lymphoma (alone or with chemotherapy)
- Pediatrics (usually with chemotherapy):
  - Rhabdomyosarcoma, Ewing's, Lymphomas, ...







# Uses of RT - NEOADJUVANT

- **NEOADJUVANT** BEFORE surgery to:
  - **Downstage** tumor to:
    - facilitate resection.
    - allow function-sparing surgery.
  - Minimize risk of positive margins and intraoperative tumor spread.
  - Minimize overall side effects of treatment as compared to radiation after surgery.
  - Maximize effectiveness of radiation by treating tumor before it is disrupted.
  - DISADVANTAGES:
    - Pathological information from surgical specimen is not available.
    - May result in **over-treatment of some patients** whose disease is less extensive than preoperative imaging evaluation suggests.





## Uses of RT: Neoadjuvant Treatment

- Lung Cancer:
  - NSCLC (especially Pancoast Tumor)
- GI Cancers:
  - Rectal
  - Esophageal
  - Pancreatic
  - Gastric
- Soft Tissue Sarcoma







# Uses of RT - ADJUVANT

### **ADJUVANT** - AFTER definitive surgery to:

- Minimize risk of **loco-regional recurrence** by sterilizing disease in:
  - unresected draining lymph nodes.
  - the margins of a resection, especially positive margins.
- Contribute to **overall survival**.





# Uses of RT: Adjuvant Treatment

- Brain
- Head and Neck
- Lung
- Breast
- GI Cancers: Gastric, Rectal
- GU: Prostate
- Soft Tissue Sarcoma
- Skin
- Pediatrics:
  - Brain, Rhabdomyosarcoma, Wilm's, Neuroblastoma, ...







### Uses of RT: Consolidative/Prophylactic RT

- Lymphoma
- Prophylactic Cranial or Craniospinal Irradiation
  - "Sanctuary" due to blood-brain barrier
  - Small Cell Lung Cancer
  - Leukemia / Lymphoma
  - Medulloblastoma and other Pediatric CNS Tumors







# Uses of RT - PALLIATIVE

- **PALLIATIVE** Relieve symptoms in incurable disease.
  - Pain:
    - Bone mets, uncontrolled head & neck, skin, chest wall, or extremity disease.
  - Neurological Impairment:
    - Brain metastases. spinal cord compression.
  - Obstructions:
    - Airway, bowel, vessels (eg SVC syndrome, extremity edema), dysphagia
  - Hemostasis:
    - Hemoptysis, vaginal bleeding, hematochezia
  - Success Rate:  $\geq$  80% for bone pain relief,  $\geq$  70% for other indications
  - Onset: within days to weeks
  - Duration of response: Weeks to Years (usually months)





# Uses of RT – BENIGN DISEASE

### BENIGN DISEASE -

- Inflammatory or Other Etiologies:
  - Heterotopic ossification prophylaxis after hip arthroplasty.
  - Keloids
  - Trigeminal neuralgia
  - AVMs
  - Grave's Ophthalmopathy
  - Pyronie's Disease
  - Hypersalivation
- Benign Tumors
  - Acoustic neuromas, Schwannomas, Meningiomas
  - Desmoid tumors





# **Radiation Toxicities**

### **DETERMINISTIC**:

- Will occur when a given tissue is exposed to given amount of radiation.
- Different tissues have differing susceptibilities.
- Result from cell death, scarring/fibrosis, or physiologic changes.
- May be influenced by medical comorbidities
  - DM, IBD, genetic radiation sensitivities (ataxia telangiectasia, xeroderma pigmentosa, ...)
- Depend on functional organization of an organ.





## **Radiation Toxicities**

### STOCHASTIC:

- No absolute dose-response relationship.
- May be caused by even very-low dose exposures, e.g.

### Radiation-induced second primary malignancies

Risk increases with:

- Younger age at treatment.
- Large volume of body treated.
- Higher dose delivered.
- Latency of > 7 years





### **Radiation Side-Effects**

- Limited to the area treated, except:
  - Fatigue
  - Nausea (usually only with abdominal treatments)
- ACUTE:
  - Normal and expected.
  - Build up slowly over course of radiation.
  - Peak 7-10 days after completion of therapy.
  - >90% resolved 3-4 weeks after treatment.





### **Radiation Side-Effects**

- Common Chronic :
  - Slowly manifest over 1-2 years after treatment.
  - Usually of mild intensity, such as:
    - Brain: Short-term memory loss
    - Prostate: Obstructive urinary symptoms (eg slow stream, nocturia, frequency, ...), erectile dysfunction
    - Head & Neck: Dry mouth, fibrosis
    - Abdomen: Frequency, intermittent diarrhea, intolerance of fatty foods
    - Breast: Tissue fibrosis.





### **Radiation Side-Effects**

- CHRONIC:
  - SEVERE complications such as bowel obstruction, fistulae, radionecrosis, strictures, etc. are RARE (<5%)</li>
  - Risk increases with higher-dose, larger fields
  - Retreatment (Reirradiation)
  - Concurrent chemotherapy
  - Diabetes, Smoking, Procedures in Treated Areas
  - Genetic Predispositions (ATM, XP, etc.)





## **Mechanism of Action**









### Maximizing Therapeutic Ratio - Fractionation Radiobiology



2KNFE



### **Conventional RT Schedules**

| Definitive RT Alone (eg Prostate Cancer, 200 cGy/d, 50 Gy to pelvis boost prostate to 80Gy)  |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|                                                                                              |  |  |  |  |  |  |
| Adjuvant RT (eg Breast Cancer, 200 cGy/, 50 Gy to whole breast boost lumpectomy bed to 60Gy) |  |  |  |  |  |  |
|                                                                                              |  |  |  |  |  |  |





#### SENSITIVITY and RESPONSIVENESS

#### **How SENSITIVE to Killing** How FAST does tumor Shrink More Fast Slow Less Squamous Cell (H&N, Anus) Lymphoma Lymphoma Melanoma / Sarcoma Squamous Sarcoma Small Cell Renal Cell / Melanoma / Renal Colorectal Small Cell Cell Lung/Colon





# Radiosurgery

- Focus 1-5 massive doses of radiation on a tumor or organ.
- Non-invasively kill nearly everything in the target volume.
- Forfeit most radiobiological sparing of normal tissues.
- More like surgery, RFA or cryotherapy.
- Rely on physics, imaging, and technology to maximally focus radiation on target and AVOID normal tissues.
- Radiobiology of large single dose treatment may induced more death of tumor neovasculature to result in better tumor killing.





### **RADIOSURGERY = RADIATION ABLATION**

| Definitive RT Alone (eg 80 Gy to prostate in 40 fx daily ) | Radiosurgery (eg 38 Gy in 5 fx) |  |  |
|------------------------------------------------------------|---------------------------------|--|--|
| Keep the prostate                                          | Radiosurgical                   |  |  |
| Kill the cancer.                                           | Prostatectomy                   |  |  |







# Maximizing Therapeutic Ratio

### How do I FOCUS it? PHYSICS

- External Beam and/or Brachytherapy
- Alphabet Soup:

IGRT, IMRT, Tomotherapy, Protons, HDR, LDR, SBRT, SRS, Cyberknife, TrueBeam, Novalis, Vero, ...















### Simulation

- Position patient as they will be treated.
- Fabricate immobilization devices (mask, arm-rest, body cradle, leg-rest, abdominal compression belt to minimize respiratory motion).
- Obtain treatment-planning CT scan of the target area.
- Place marks (often tattoos) as reference for repositioning.





### Planning

- Rad Onc works with team to define treatment:
  - Fuse different imaging modalities to the planning CT
  - Draw targets and normal structures to avoid
  - Specify Dose-Volume Constraints, for example:
    - Max dose to spinal cord < 50 Gy
    - No more than 27% of lungs to get 20 Gy
    - Lowest dose in PTV should be 95% of the prescription
  - Work with team to optimize treatment
  - Quality assurance





## Image-Guided IMRT - Delivery









## Brachytherapy – Implant Types

- Temporary
  - "Applicator" = device or catheters placed within tumorbearing tissue to hold radioactive sources.
  - Applicator removed at end of therapy.

### • Permanent

 Permanent implantation of radioactive seeds into tumor which decay to inert metal











## Brachytherapy – Dose Rate

- Low Dose Rate
  - Low activity radioactive seeds slowly deliver radiation over days to months.



- High Dose Rate
  - High activity source pushed in & out of applicator by robot (Afterloader)







