Aortic Stenosis

Calvin Madrigal, PGY 5

Objectives

- I. Prevalence of aortic stenosis in patients over the age of 65 in developed countries.
- 2. The prognosis between asymptomatic versus symptomatic disease.
- 3. Describe the three symptoms of aortic stenosis and the pathophysiology associated with these symptoms.
- 4.Describe the physical examination findings in patients with aortic stenosis and the reason for the absence of these findings.

Objectives

- 5.Define severe aortic stenosis and know the management for :
 - Severe symptomatic patient who is a candidate for Surgery.
 - Severe symptomatic patient who is not a candidate for surgery.
 - Moderate aortic stenosis who needs a CABG.

 Severe asymptomatic aortic stenosis
 6.Differentiate true aortic stenosis from "pseudostenosis and why it is important."

Aortic Valve

• Semilunar valve (Pulmonic and Aortic)

- Tricuspid (Left/right coronary cusp and noncoronary cusp)
- Normal area: 3-4cm²
- o Normal transvalvuar Velocity: <2m/s</p>

Aortic Stenosis Epidemiology

- The most common cause of left ventricular outflow obstruction in adults.
- Prevalence: Increases with age, 2-7% of all patients > 65 are reported to have AS.
- Valvular heart disease accounts for 10-20% of all cardiac surgical procedures in the US.
- Approximately 2/3 of all heart valve operations are for AS.
- Without intervention, mortality rates reach as high as 75% in 3 years once symptoms develop.

Three primary causes :

- I. Age associated calcific changes
- II. Congenital aortic valve disease
 - a) Unicupsid
 - b) Bicuspid
- III. Rheumatic valve disease

Congenital aortic valve disease

 Unicuspid: Typically produce severe obstruction in infancy and most frequent malformation found in fatal valuvar AS in children <1 year.

Congenital aortic valve disease

Bicuspid: Present in 1-2% of the population with a greater prevalence for males.Commonly associated with coarctation of the aorta and aortic aneurysm. Earlier presentation of symptoms when compared to trileaflet valve.

Rheumatic valve disease

- Leads to adhesions and fusions of the commissures and cusps with subsequent stiffening.
- Orifice is reduced to a small round or triangular opening and often associated with concomitant aortic regurgitation.
- Remains a problem in developing countries

Calcific aortic valve disease (senile)

- Most common cause of AS in adults
- Once considered to represent normal mechanical stress on the valve.
- The evolving concept is that the disease is a mixture of genetic, proliferative and inflammatory changes resulting in calcification and subsequent immobilization of cusps.
- Linked to genetic polymorphisms, involving vitamin D receptors, interleukin-10 alleles and apolipoprotein E4 allele
- Risk factors include: Elevated LDL, lipoprotein(a), diabetes, smoking and hypertension.

• Calcific aortic valve disease (senile)

TABLE 63-1 Strength of Associations in Observational and Epidemiologic Studies of Clinical Risk Factors and Calcific Aortic Valve Disease (CAVD)

	CAVD ANALYSIS				
RISK FACTOR	Cross-Sectional	Incident	Progression		
Age	+++	+++	+++		
Male sex	++/-	++	0		
Height	++	++	0		
BMI	++	++	0		
Hypertension	++	++	0		
Diabetes	+++	+++	0		
Metabolic syndrome	++	++	+		
Dyslipidemia	++	++	0		
Smoking	++	++	+		
Renal dysfunction	+	0	0		
Inflammatory markers	+	0	0		
Phosphorus levels	++	0	N/A		
Calcium levels	0	0	N/A		
Baseline calcium score	N/A	N/A	+++		

TABLE 63-2 Candidate Gene Association Studies for Calcific Aortic Valve Disease

STUDY (YEAR)	GENE	LOCATION	PHENOTYPE	CASES	RISK VARIANT	P VALUE
Ortlepp et al, 2001	Vitamin D receptor	12q12-q14	Severe AS	100	8 allele	.001
Avakian et al, 2001	Аров	2p24-p23	Severe AS	62	X+	.007
	ApoE	19q13.2	AS	43	ApoE 2/4 + 3/4 genotypes	.03
Nordström et al, 2003	Estrogen receptor $\boldsymbol{\alpha}$	6q25.1	AVR	41	Pvull polymorphism	.03
	TGF-β receptor type1	9q33-q34	AVR	41	Aocl polymorphism	*
Ortlepp et al, 2004	Interleukin-10_ ENREF_95	1q31-q32	Ex vivo atomic absorption	187	3 promoter polymorphisms	.03
	Chemokine receptor 5	3p21.31	Ex vivo atomic absorption	187	32-base pair deletion	.04'
Moura et al, 2012	Paraoxonase 1	7q21-22	Moderate AS	67	Q192R polymorphisms	.03
Kamstrup et al, 2014	Lipoprotein (a)	6q26-27	AS with or without AVR	454	LPA genotypes rs10455872, rs3798220	.001
Mahmut et al, 2014	LP PLAZ	rs1805017	Ex vivo	40	Upregulation of PLA2G family of genes	.001

Aortic Valve Etiology

Calcific aortic valve disease (senile)

в Normal

AORTIC VALVE ANATOMY

Mild to moderate aortic stenosis

DOPPLER AORTIC JET VELOCITY

Aortic sclerosis

0

1

2

3

4

5

Severe aortic stenosis

C

Aortic Stenosis Pathophysiology

Outflow obstruction

- Increased LV systolic pressure leads to increased LV mass with subsequent diastolic dysfunction and increase in myocardial O₂ consumption.
- Increased LV ejection time leads to increased myocardial
 O₂ consumption and decreased diastolic time.
- Increased LV diastolic pressure leads to decreased myocardial O₂ supply
- Decreased aortic pressure leads to decreased myocardial O₂ supply
- Myocardial O₂ consumption exceeds myocardial O₂ supply and LV failure develops.

Aortic Stenosis Pathophysiology

Cardinal Symptoms

- I. Exertional Dyspnea
- II. Angina
- III. Syncope

Exertional Dyspnea

- Most common clinic presentation in severe AS.
- Associated with decrease in exercise tolerance and fatigue.
- Symptoms are due to the inability to increase cardiac output with exercise.
- LV diastolic dysfunction and subsequent rise in enddiastolic pressure can lead to pulmonary congestion.

Angina

- Occurs in approximately 2/3 of patients with severe AS, approximately 50% of whom have significant CAD.
- In those without CAD, angina is due to increase oxygen requirement for the hypertrophied myocardium and reduction of O₂ delivery secondary to excessive compression of coronary vessels and decreased diastolic time.
- In those with CAD, angina is due to a combination of epicardial coronary compression and O₂ imbalance. Very rarely due calcific emboli to the coronary vessels.

Syncope

- Systemic vasodilation during exertion leads to decline in arterial pressure. In the setting of a fixed cardiac output this leads to reduced cerebral perfusion.
- Malfunction of the baroceptors via activation of the mechanosensitive vagal afferents in response to outflow obstruction leads to a vasodepressor response.
- Loss of atrial contribution to LV filling in the setting of transient Afib can also lead to decline in CO and subsequent syncope.
- Transient AV block due to extension of calcification into the conduction system can lead to syncope due to bradycardia or loss of atrial contribution to LV filling.

Key features of physical examination

- I. Carotid upstroke Pulsus parvus et tardus
 - Reflects arterial pressure wave form
 - Palpation of carotid pulse demonstrates a weak pulse (parvus)
 - Simultaneous Palpation of the carotid upstroke while auscultating the heart will demonstrate peak carotid upstroke closer to S2 as opposed to S1 (tardus).
 - Above findings specific for severe AS but not sensitive as concurrent conditions such as systemic hypertension can affect the carotid impulse.

Key features of physical examination I. Carotid upstroke – Pulsus parvus et tardus

Key features of physical exam

II. Murmur

- Best heard over the 2nd RICS
- Harsh Crescendo-decrescendo systolic murmur
- Radiates to the carotids
- High frequency can radiate to apex mimicking MR – Gallavardian phenomenon.
- Intensity of the murmur is an insensitive marker for severity.
- Late peaking murmur indicates severe AS.
- Squatting augments murmur (increase SV)
- Valsalva and handgrip maneuver decrease murmur due to decreased preload and increased afterload, respectively

• Key features of physical exam

III. Effects on S2

- Single S2, calcification and immobility of the aortic valve make A2 inaudible and P2 is only heard.
- Paradoxical split (LBBB or prolonged LV systole)
- Normally splitting excludes severe AS.

• EKG

- LV hypertrophy
- Left atrial enlargement
- AV or IVD depending on the extension of calcific infiltrates in to the conduction system.

• Echocardiography

- Standard approach for following and evaluating patients with AS.
- Accurate at assessing valve anatomy and severity of calcification.
- Assessment of LV function.
- Doppler allows measurements of transaortic jet velocity.
- Valve area and mean transaortic gradient can be calculated using continuity equation and Bernoulli equation, respectively.

• Echocardiography

AHA Guidelines for Severity of Aortic Stenosis					
	Maximum Aortic Mean Pressure				
	Valve Area (cm2)	Velocity (mmHg)	Gradient (mmHg)		
Mild	1.5-2	2.5-3.0	< 25		
Moderate	1.0-1.5	3.0-4.0	25-40		
Severe	0.6-1.0	>4.0	>40		
Critical	< 0.6				

Cardiac Catheterization

- Recommended when noninvasive testing is inconclusive, clinical and echocardiographic findings are discordant.
- Recommended prior to surgical intervention to assess coronary arteries.

In 2014, AHA/ACC published updated classification of VHD into 4 stages (A-D)

Table 3. Stages of Progression of VHD

	0 0	
Stage	Definition	Description
А	At risk	Patients with risk factors for development of VHD
В	Progressive	Patients with progressive VHD (mild-to-moderate severity and asymptomatic)
С	Asymptomatic severe	Asymptomatic patients who have the criteria for severe VHD:
		C1: Asymptomatic patients with severe VHD in whom the left or right
		ventricle remains compensated
		C2: Asymptomatic patients with severe VHD, with decompensation of the
		left or right ventricle
D	Symptomatic severe	Patients who have developed symptoms as a result of VHD
VHD indic	ates valvular heart disease.	

Stage	Definition	Valve Anatomy	Valve Hemodynamics	Hemodynamic	Symptoms
				Consequences	
A	At risk of AS	 Bicuspid aortic valve (or other congenital valve anomaly) Aortic valve sclerosis 	• Aortic V _{max} <2 m/s	• None	• None
В	Progressive AS	 Mild-to-moderate leaflet calcification of a bicuspid or trileaflet valve with some reduction in systolic motion or Rheumatic valve changes with commissural fusion 	 Mild AS: Aortic V_{max} 2.0–2.9 m/s or mean ΔP <20 mm Hg Moderate AS: Aortic V_{max} 3.0–3.9 m/s or mean ΔP 20–39 mm Hg 	 Early LV diastolic dysfunction may be present Normal LVEF 	• None

C: Asy	mptomatic severe AS				
C1	Asymptomatic severe AS	 Severe leaflet calcification or congenital stenosis with severely reduced leaflet opening 	 Aortic V_{max} ≥4 m/s or mean ΔP ≥40 mm Hg AVA typically is ≤1.0 cm² (or AVAi ≤0.6 cm²/m²) Very severe AS is an aortic V_{max} ≥5 m/s or mean ΔP ≥60 mm Hg 	 LV diastolic dysfunction Mild LV hypertrophy Normal LVEF 	 None: Exercise testing is reasonable to confirm symptom status
C2	Asymptomatic severe AS with LV dysfunction	 Severe leaflet calcification or congenital stenosis with severely reduced leaflet opening 	 Aortic V_{max} ≥4 m/s or mean ΔP ≥40 mm Hg AVA typically ≤1.0 cm² (or AVAi ≤0.6 cm²/m²) 	• LVEF <50%	• None

D: Sym	D: Symptomatic severe AS					
D1	Symptomatic severe high-gradient AS	 Severe leaflet calcification or congenital stenosis with severely reduced leaflet opening 	 Aortic V_{max} ≥4 m/s or mean ΔP ≥40 mm Hg AVA typically ≤1.0 cm² (or AVAi ≤0.6 cm²/m²) but may be larger with mixed AS/AR 	 LV diastolic dysfunction LV hypertrophy Pulmonary hypertension may be present 	 Exertional dyspnea or decreased exercise tolerance Exertional angina Exertional syncope or presyncope 	
D2	Symptomatic severe low-flow/low- gradient AS with reduced LVEF	Severe leaflet calcification with severely reduced leaflet motion	 AVA ≤1.0 cm² with resting aortic V_{max} <4 m/s or mean ΔP <40 mm Hg Dobutamine stress echocardiography shows AVA ≤1.0 cm² with V_{max} ≥4 m/s at any flow rate 	 LV diastolic dysfunction LV hypertrophy LVEF <50% 	 HF Angina Syncope or presyncope 	
D3	Symptomatic severe low-gradient AS with normal LVEF or paradoxical low-flow severe AS	Severe leaflet calcification with severely reduced leaflet motion	 AVA ≤1.0 cm² with aortic V_{max} <4 m/s or mean ΔP <40 mm Hg Indexed AVA ≤0.6 cm²/m² and Stroke volume index <35 mL/m² Measured when patient is normotensive (systolic BP <140 mm Hg) 	 Increased LV relative wall thickness Small LV chamber with low stroke volume Restrictive diastolic filling LVEF ≥50% 	 HF Angina Syncope or presyncope 	

 Mr A, 83 y/o male presents with shortness of breath and peripheral edema. His pulse is 64 bpm and his BP 110/90. Auscultation reveals an absents aortic second heart sound with a late peaking systolic murmur best heard over the 2nd RICS.

He has a pmh of HTN and HLD, otherwise his renal and pulmonary functions are normal.

Vignette 1 continued

• What features are concerning in regards to the patient physical exam?

Absent aortic second heart sound

Late peaking systolic murmur

Vignette 1 continued

• What diagnostic study would like to order?

Echocardiogram

- LV EF: 55%
- Mean gradient: 60mmHg
- AVA: 0.6cm2
- Peak Velocity: 4.6 m/s
- What stage is the patient?
 D1

- Mr. A is appreciative of your thorough evaluation and asks, "What is next?"
 A. Tell Mr. A that his disease is severe and you will continue to monitor with surveillance echocardiograms.
 - B. Initiate guideline directed medical therapy.
 C. Tell Mr. A that all is well and is free to go home.
 - >D. Refer for surgical aortic valve replacement

ery.

Mr. B, 79 y/o male with HTN and HLD presents to the outpatient clinic with worsening shortness of breath and chest discomfort. You order an EKG which demonstrates LVH and an echocardiogram which demonstrates an LV EF of 25%, a calcified aortic valve with a mean gradient of 28mmHg, AVA of 0.8cm2 and peak velocity of 3.16m/s.

 Does the patient's aortic stenosis account for his symptoms? Does the patient have severe AS? What would you like to do next?

- A. The patient symptoms are secondary to heart failure. Optimize his medical regimen.
- B. The patient has moderate aortic stenosis. Repeat echo in 6-12months.
- C. Order a dobutamine stress echo to assess for severe AS versus pseuodstenosis.

Differentiating true aortic stenosis from "pseudostenosis and its importance.

- Dobutamine stress echo (DSE) has a class IIa indication in patient with stage D2 aortic stenosis.
- It can differentiate true severe aortic stenosis (Stage D2) from "pseudostenosis". This is paramount as the former is associated with improved long-term outcomes with AVR and the latter has no benefit from AVR.
- Allows for assessment of contractile reserve, defined as an increase SV > 20%. Patient's without contractile reserve have higher operative mortality.

Class IIa

- 1. Low-dose dobutamine stress testing using echocardiographic or invasive hemodynamic measurements is reasonable in patients with stage D2 AS with all of the following (46-48), (Level of Evidence: B):
 - a. Calcified aortic valve with reduced systolic opening;
 - b. LVEF less than 50%;
 - c. Calculated valve area 1.0 cm² or less; and
 - d. Aortic velocity less than 4.0 m per second or mean pressure gradient less than 40 mm Hg.

Dobutamine stress echocardiography in low-flow aortic stenosis

Low-flow, low-gradient aortic stenosis

Dobutamine stress echocardiography

Hemodynamic response

Aortic valve area > 1.2 cm² Projected aortic valve area > 1.0 cm² Aortic valve area $\leq 1.2 \text{ cm}^2$ Projected aortic valve area $\leq 1.0 \text{ cm}^2$

Pseudostenosis

Medical treatment

True severe aortic stenosis

Contractile reserve: Increase in stroke volume > 20%

Aortic valve replacement with or without coronary artery bypass grafting No contractile reserve: Increase in stroke volume $\leq 20\%$

Options: Transcatheter aortic valve replacement Surgical aortic valve replacement Heart transplantation Heart failure therapy

 Mr. B underwent DSE and results demonstrated increase in EF, SV and transvalvular gradient suggestive of true severe AS and contractile reserve. You subsequently refer him for AVR.

Mr. C, 81 y/o male with HTN and HLD presents to the ER with chest pain. EKG demonstrates nonspecific ST changes with elevated troponin. He is diagnosed with NSTEMI. A LHC is performed and reveals triple vessel disease. Echocardiogram is ordered and demonstrates an EF of 55% and aortic stenosis with a AVA 1.2cm2 and a mean gradient of 28mmHg and peak velocity 3.31 m/s

• What is the stage and the severity of the patient aortic stenosis?

- ≻A. Stage A, mild AS
- >B. Stage D, severe AS
- ≻C. Stage C, moderate AS
- ≻D. Stage B, moderate AS

B	Progressive AS	 Mild-to-moderate leaflet calcification of a bicuspid or trileaflet valve with some reduction in systolic motion or Rheumatic valve changes with commissural fusion 	 Mild AS: Aortic V_{max} 2.0–2.9 m/s or mean ΔP <20 mm Hg Moderate AS: Aortic V_{max} 3.0–3.9 m/s or mean ΔP 20–39 mm Hg 	 Early LV diastolic dysfunction may be present Normal LVEF 	• None
---	----------------	---	---	--	--------

• How would manage the patient's aortic stenosis?

- >A. Monitor with surveillance echocardiogram every 6-12 months.
- >B. Medical management with statin and ACE inhibitor.
- C. Perform PCI to obstructive lesions and monitor AS as outpatient.
- ≻D. Refer CABG and AVR.

- AHA/ACC guidelines for VHD state that AVR is a class IIa indication for moderate AS (stage B) undergoing cardiac surgery.
- Stage B patient, otherwise, follow the below surveillance regimen.

Table 4. Frequency of Echocardiograms in Asymptomatic Patients with VHD and Normal Left Ventricular Function

Stage	Valve Lesion				
Stage	Aortic Stenosis*	Aortic Regurgitation	Mitral Stenosis	Mitral Regurgitation	
Progressive (stage B)	Every 3–5 y (mild severity V _{max} 2.0–2.9 m/s) every 1–2 y (moderate severity V _{max} 3 0–3 9 m/s)	Every 3–5 y (mild severity) Every 1–2 y (moderate severity)	Every 3–5 y (MVA >1.5 cm ²)	Every 3–5 y (mild severity) Every 1–2 y (moderate severity)	
Severe (stage C)	Every 6-12 mo (V _{max} ≥4 m/s)	Every 6–12 mo Dilating LV: more frequently	Every 1–2 y (MVA 1.0–1.5 cm ²) Once every year (MVA <1.0 cm ²)	Every 6–12 mo Dilating LV: more frequently	

- Mr. E, 84 y/o male has severe aortic stenosis (AVA 0.6cm2 and mean gradient of 56mmHg), CAD s/p CABG, moderate COPD, CKD, HTN, HLD and DMII. He presents with worsening shortness of breath over the past month. Your impression is that he is very frail.
 How would you manage Mr. E's aortic stenosis?
 - >A. Medical management as he is high risk.
 - ➢B. Recommend balloon valvuloplasty.
 - >C. Repeat echocardiogram.
 - D. Refer for transcatheter aortic valve replacement (TAVR)

• TAVR

- Class I: TAVR is recommend in patients who have an indication for AVR with prohibitive surgical risk and a predicted post-TAVR survival greater than 12 months.
- Class IIa: TAVR is recommended in patients who have an indication for AVR with a high surgical risk.

 FDA approved in 2011, Edward Sapien valve and Medtronic CoreValve are available in the US.

 Outcomes of TAVR in the PARTNER trial demonstrated that those treated with TAVR had significantly better survival compared to medical therapy and similar long term outcomes (2years) compared to SAVR in high risk surgical patients.

 FDA approved, Edward Sapien valve for intermediate risk patient in August 2016 based on Partner II trial The Partner II trial demonstrated that TAVR in intermediate-risk patients is associated with low mortality, strokes, and regurgitation at 1 year. The propensity score analysis indicates a significant superiority composite outcome with TAVR compared with surgery

 Partner III trial is currently in progress.
 The trial is evaluating TAVR in low risk patient with severe aortic regurgitation.

- Mr. D, 74 y/o male with HTN, HLD and AS presents for his annual echocardiogram. He lives a sedentary lifestyle but feels well with performing his ADLs. He denies dyspnea on exertion, chest pain or syncope.
- His Echo demonstrates preserved EF, AVA of 0.7cm2, mean gradient 70mmHg and peak velocity 4.7m/s. The prior year he had a mean gradient of 40 and peak velocity of 4.0m/s How would you manage his aortic stenosis?
 - >A. Continue yearly surveillance echocardiograms.
 - >B. Refer for exercise treadmill test to elicit symptoms.
 - >C. Discontinue yearly surveillance echocardiograms.

 You refer Mr. D for an ETT which elicits symptoms. You subsequently refer him for AVR.

Class IIa

- 1. Low-dose dobutamine stress testing using echocardiographic or invasive hemodynamic measurements is reasonable in patients with stage D2 AS with all of the following (46-48), (Level of Evidence: B):
 - a. Calcified aortic valve with reduced systolic opening;
 - b. LVEF less than 50%;
 - c. Calculated valve area 1.0 cm² or less; and
 - d. Aortic velocity less than 4.0 m per second or mean pressure gradient less than 40 mm Hg.
- Exercise testing is reasonable to assess physiological changes with exercise and to confirm the absence of symptoms in asymptomatic patients with a calcified aortic valve and an aortic velocity 4.0 m per second or greater or mean pressure gradient 40 mm Hg or higher (stage C) (27, 37, 38, 49). (Level of Evidence: B)

Aortic Stenosis Management

- In the case of life-limiting comorbidities consider aortic balloon valvuloplasty for palliation.
- Balloon valvuloplasty can also be used for bridge therapy
- Nitroprusside (vasodilator therapy) may be reasonable if used with invasive hemodynamic monitoring in the acute management of patients with stage D AS and NYHA stage IV heart failure symptoms. (IIb)

Aortic Stenosis Summary

Nishimura, RA et al. 2014 AHA/ACC Valvular Heart Disease Guideline

Surgical Risk

• Link to STS calculator:

http://riskcalc.sts.org/stswebriskcalc/#/

Table 5. Risk Assessment Combining STS Risk Estimate, Frailty, Major Organ System Dysfunction, and Procedure-Specific Impediments

	Low Risk (Must Meet ALL Criteria in This	Intermediate Risk (Any 1 Criterion in This Column)	High Risk (Any 1 Criterion in This Column)	Prohibitive Risk (Any 1 Criterion in This Column)
	Column)			
STS PROM*	<4%	4% to 8%	>8%	Predicted risk with surgery
	AND	OR	OR	of death or major morbidity
Frailty†	None	1 Index (mild)	≥2 Indices	(all-cause) >50% at 1 y
	AND	OR	(moderate to	OR
			severe)	di successione
			OR	Heart
Major organ	None	1 Organ system	No more than 2	≥3 Organ systems
system	AND	OR	organ systems	OR
compromise not			OR	
to be improved				-
postoperatively‡				
Procedure-	None	Possible procedure-	Possible procedure-	Severe procedure-specific
specific	1 1/2/	specific	specific impediment	impediment
impediment§		impediment		

Table 5. Risk Assessment Combining STS Risk Estimate, Frailty, Major Organ System Dysfunction, and Procedure-Specific Impediments

	Low Risk (Must	Intermediate Risk	High Risk	Prohibitive Risk
	Meet ALL	(Any 1 Criterion	(Any 1 Criterion	(Any 1 Criterion in This
	Criteria in This	in This Column)	in This Column)	Column)
	Column)			
STS PROM*	<4%	4% to 8%	>8%	Predicted risk with surgery
	AND	OR	OR	of death or major morbidity
Frailty [†]	None	1 Index (mild)	≥2 Indices	(all-cause) >50% at 1 y
	AND	OR	(moderate to	OR
			severe)	ef
			OR	Heart
Major organ	None	1 Organ system	No more than 2	≥3 Organ systems
system	AND	OR	organ systems	OR
compromise not			OR	
to be improved				-
postoperatively‡		1		
Procedure-	None	Possible procedure-	Possible procedure-	Severe procedure-specific
specific	1 1/2/	specific	specific impediment	impediment
impediment§		impediment		