

Jiaxin Niu, MD, PhD

Thoracic & Head/Neck Medical Oncology

Lung Cancer

- 1. Epidemiology and etiology of lung cancer
- 2. Lung cancer screening
- **3. Management of NSCLC**
- 4. Diagnosis and management of SCLC and paraneoplastic syndrome

Estimated New Cancer Patients in 2017

			Males	Females		
Prostate	161,360	19%		Breast	252,710	30%
Lung & bronchus	116,990	14%	17	Lung & bronchus	105,510	12%
Colon & rectum	71,420	9%		Colon & rectum	64,010	8%
Urinary bladder	60,490	7%		Uterine corpus	61,380	7%
Melanoma of the skin	52,170	6%		Thyroid	42,470	5%
Kidney & renal pelvis	40,610	5%		Melanoma of the skin	34,940	4%
Non-Hodgkin lymphoma	40,080	5%		Non-Hodgkin lymphoma	32,160	4%
Leukemia	36,290	4%		Leukemia	25,840	3%
Oral cavity & pharynx	35,720	4%		Pancreas	25,700	3%
Liver & intrahepatic bile duct	29,200	3%		Kidney & renal pelvis	23,380	3%
All Sites	836,150	100%		All Sites	852,630	100%

Estimated Cancer Death in 2017

			Males	Females	
Lung & bronchus	84,590	27%		Lung & bronchus 71,280	25%
Colon & rectum	27,150	9%	17	Breast 40,610	14%
Prostate	26,730	8%		Colon & rectum 23,110	8%
Pancreas	22,300	7%		Pancreas 20,790	7%
Liver & intrahepatic bile duct	19,610	6%		Ovary 14,080	5%
Leukemia	14,300	4%		Uterine corpus 10,920	4%
Esophagus	12,720	4%		Leukemia 10,200	4%
Urinary bladder	12,240	4%		Liver & intrahepatic bile duct 9,310	3%
Non-Hodgkin lymphoma	11,450	4%		Non-Hodgkin lymphoma 8,690	3%
Brain & other nervous system	9,620	3%		Brain & other nervous system 7,080	3%
All Sites	318,420	100%		All Sites 282,500	100%

Causes: Lung Cancer

1. Smoking

a. 1/7 will die of lung cancer
b. 85-90% of lung cancer death
c. Pipes and cigars
d. 2nd-hand smoking: 30% of non-smoker death (~3000/year)

Fig. 5. Relative risks of lung cancer in ex-smokers, by number of years quit, women, Cancer Prevention Study II. Data from Garfinkel and Stellman.⁸

Causes: Lung Cancer

2. Occupational exposure

a. Asbestos

- 3-4% lung cancer
- Synergy: smoker 50-100 folds vs non-smoker 5 folds

b. Radon, polycyclic aromatic hydrocarbons, nickel, chromium85-90% of lung cancer death

3. Air pollution, smoke from cooking and heating4. Genetic predisposition5. Age

Lung Cancer Incidence with Age

Age-specific Incidence Rates for NSCLC in the US, 1992-2009

SEER cancer statistics review 1975-2009. National Cancer Institute Web site. Median age of diagnosis 73 http://seer.cancer.gov/csr/1975_2009_pops09/.Updated August 20, 2012.

Screening

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

AUGUST 4, 2011

VOL. 365 NO. 5

Reduced Lung-Cancer Mortality with Low-Dose Computed Tomographic Screening

The National Lung Screening Trial Research Team*

53454 Pts: Annual low-dose CT vs AP CXR

20% reduction in lung cancer mortality at6.5 years of follow-up

Screening

USPSTF: 55-79 y

Presentation

1. Asymptomatic (sceening, incidental findings)

2. Symptoms

- a. Cough, hemoptysis
- b. Pneumonia
- c. Pain
- d. Weight loss
- e. Paraneoplastic syndrome related to tumor growth (AdenoCa, SCLC)

Stage at Diagnosis

Workup and Staging

- 1. CT with contrast
- **2.** MRI
- 3. Bone scan
- **4. PET-CT**
- 5. Biopsy
- 6. Pulmonary function test
- 7. EBUS/Mediastinoscopy

Lung Cancer: Small Cell vs Non-Small Cell

NSCLC Staging

NCCN Guidelines Index

Table of Contents

Discussion

Table 1. Definitions for T, N, M

Cancer

Network[®]

National

т	Primary	Tumor
---	---------	-------

NCCN

- **TX** Primary tumor cannot be assessed, or tumor proven by the presence of malignant cells in sputum or bronchial washings but not visualized by imaging or bronchoscopy
- T0 No evidence of primary tumor

Comprehensive

Tis Carcinoma in situ Squamous cell carcinoma in situ (SCIS) Adenocarcinoma in situ (AIS): adenocarcinoma with pure lepidic pattern, ≤3 cm in greatest dimension

NCCN Guidelines Version 3.2019

Non-Small Cell Lung Cancer

- T1 Tumor ≤3 cm in greatest dimension, surrounded by lung or visceral pleura, without bronchoscopic evidence of invasion more proximal than the lobar bronchus (i.e., not in the main bronchus)
 - T1mi Minimally invasive adenocarcinoma: adenocarcinoma (<3 cm in greatest dimension) with a predominantly lepidic pattern and <5 mm invasion in greatest dimension
 - T1a Tumor ≤1 cm in greatest dimension. A superficial, spreading tumor of any size whose invasive component is limited to the bronchial wall and may extend proximal to the main bronchus also is classified as T1a, but these tumors are uncommon.
 - T1b Tumor >1 cm but ≤2 cm in greatest dimension
 - T1c Tumor >2 cm but \leq 3 cm in greatest dimension
- T2 Tumor >3 cm but ≤5 cm or having any of the following features: (1) Involves the main bronchus, regardless of distance to the carina, but without involvement of the carina; (2) Invades visceral pleura (PL1 or PL2); (3) Associated with atelectasis or obstructive pneumonitis that extends to the hilar region, involving part or all of the lung
 - T2a Tumor >3 cm but ≤4 cm in greatest dimension
 - T2b Tumor >4 cm but ≤5 cm in greatest dimension
- T3 Tumor >5 cm but ≤7 cm in greatest dimension or directly invading any of the following: parietal pleura (PL3), chest wall (including superior sulcus tumors), phrenic nerve, parietal pericardium; or separate tumor nodule(s) in the same lobe as the primary
- T4 Tumor >7 cm or tumor of any size invading one or more of the following: diaphragm, mediastinum, heart, great vessels, trachea, recurrent laryngeal nerve, esophagus, vertebral body, carina; separate tumor nodule(s) in a ipsilateral lobe different from that of the primary

NSCLC Staging

NCCN NCCN NCCN Network®

ve NCCN Guidelines Version 3.2019 Non-Small Cell Lung Cancer

NCCN Guidelines Index Table of Contents Discussion

Table 1. Definitions for T, N, M (continued)		Table 2. AJCC Prognostic Groups								
Ν		Regional Lymph Nodes		т	Ν	Μ		т	Ν	Μ
NX		Regional lymph nodes cannot be assessed	Occult Carcinoma	ТХ	N0	M0	Stage IIIB	T1a	N3	M0
N0		No regional lymph node metastasis						T1b	N3	M0
N1		Metastasis in ipsilateral peribronchial and/or ipsilateral	Stage 0	Tis	N0	MO		T1c	N3	M0
		hilar lymph nodes and intrapulmonary nodes, including involvement by direct extension	Stage IA1	T1mi	N0	M0		T2a	N3	M0
N2		Metastasis in ipsilateral mediastinal and/or subcarinal	Stars 140	та	NO	NIO		T2b	N3	M0
		lymph node(s)	Stage IA2		NU	MU		Т3	N2	M0
N3		Metastasis in contralateral mediastinal, contralateral hilar,	Stage IA3	110	NU	MU		T4	N2	M0
ipsilateral or contralateral scalene, or suprac node(s)	ipsilateral or contralateral scalene, or supraclavicular lymph	Stage IB	T2a	N0	MO	Stage IIIC	Т3	N3	M0	
	lioue(3)	Stage IIA	T2b	N0	MO		T4	N3	M0	
м		Distant Metastasis	Stage IIB	T1a	N1	M0	Stage IVA Stage IVB	Any T	Any N	M1a
мх		Distant metastasis cannot be assessed		T1b	N1	MO		Any T	Any N	M1b
MO		No distant metastasis		T1c	N1	MO		Any T	Any N	M1c
M1		Distant metastasis		T2a	N1	MO				
	M1a	Separate tumor nodule(s) in a contralateral lobe: tumor		T2b	N1	MO				
		with pleural or pericardial nodules or malignant pleural or		Т3	N0	MO				
		pericardial effusion ^a	Stage IIIA	T1a	N2	M0				
	M1b	Single extrathoracic metastasis in a single organ (including involvement of a single nonregional node)		T1b	N2	M0				
	M1c	Multiple extrathoracic metastases in a single organ or in multiple organs		T1c	N2	MO				
	WITC			T2a	N2	M0				
				T2b	N2	M0				
				Т3	N1	MO				
				T4	N0	M0				
				T 4	N1	M0				

NSCLC Staging and Therapy

Stage I: no LN involvement Surgery vs SBRT

Stage II: local nodes Surgery + Adjuvant chemo

Stage III: Mediastinal or supraclavicular LNs Concurrent chemoXRT + IO Stage IV: contralateral lungs, pleural effusion, distant mets Systemic therapy

NSCLC: Pacific study

Figure 2. Overall Survival in the Intention-to-Treat Population.

Stage IV NSCLC and Therapy

I. Cytotoxic chemotherapy

- Platinum, taxanes, gemcitabine, pemetrexate, vinorelbine

II. Biological therapy

- Bevecizumab, ramuciruamb
- Necitumumab

III. Targeted therapy

- EGFR
- ALK-fusion
- ROS 1
- HER2
- BRAF

IV. Immunotherapy

"Cytotoxic" Chemotherapy for Stage IV NSCLC

Cisplatin 75 mg/m² Day 1 plus Pemetrexed 500 mg/m² Day 1

One cycle = 3 weeks, **Stop at 6 cycles**

Cisplatin 75 mg/m² Day 1 plus Gemcitabine 1,250 mg/m² Days 1, 8

Results	Pem/Cis	Gem/Cis	HR
No. patients	862	863	
Median survival (mos)	10.3	10.3	0.94
Adenocarcinoma (847)	12.6	10.9	
Large cell (153)	10.4	6.7	
SqCC (473)	9.4	10.8	1.23

Scagliotti et al, 2008.

Anti-Angiogenesis

Judah Folkman NEJM: 285: 1182-1186, 1971

Agents Targeting the VEGF Pathway

Podar K, et al. Blood. 2005:105:1383-1395. Gori B, et al. Ther Clin Risk Manag. 2011;7:429-440.

Target Angiogenesis: Bevacizumab

SQUAMOUS HISTOLOGY EXCLUDED (for squamous histology, rate of hemoptysis 30% in phase 2 testing

RR: 15% for CbP Vs. 35% for CbP + Bevacizumab

Sandler et al, NEJM 2006.

Anti-Angiogenesis Side Effects

Hypertension

Arterial or venous thrombotic events

Gastrointestinal perforation (fistula)

Bleeding

Delayed wound healing

Proteinuria (nephrotic syndrome)

RPLE (reverse posterior leukoencephalopathy)

Lung Cancer: Small Cell vs Non-Small Cell

Lung Cancer: Non-Small Cell

NGS for Mutational Analysis using FFPE

Oncomine Cancer Research Panel Gene List

Hotspot	genes, n=73	Full-gene coverage, n=26	Copy Number Variants, n=49	Fusion drivers, n=22
ABL1 GN AKT1 GN ALK GN AR HN ARAF HR BRAF IDF BTK IDF CBL IFT CDK4 IFT CHEK2 JAU CSF1R JAU CSF1R JAU CTNNB1 JAU DDR2 KD DNMT3A KIT EGFR KN ERBB2 KR ERBB3 MA ERBB4 MA ESR1 MA ESR1 MA FGFR1 MA FGFR1 MA FGFR2 ME FGFR3 ME FLT3 ML FOXL2 MF GATA2 MT	IA11MYD88IAQNFE2L2IASNPM1IF1ANRASIF1ANRASIF1APDGFRA12PIK3CATM1PPP2R1ATM3PTPN11K1RAC1K2RAF1K3RETIRRHEBFRHOAISTRNSF3B1IASSMOIGOHSPOPIP2K1SRCIP2K2STAT3IPK1U2AF1IXXPO1ED12TITH1ICTOR	APC ATM BAP1 BRCA1 BRCA2 CDH1 CDKN2A FBXW7 GATA3 MSH2 NF1 NF2 NOTCH1 PIK3R1 PTCH1 PIK3R1 PTCH1 PTEN RB1 SMAD4 SMARCB1 STK11 TET2 TP53 TSC1 TSC2 VHL WT1	ACVRL1IGF1RAKT1IL6APEX1KITARKRASATP11BMCL1BCL2L1MDM2BCL9MDM4BIRC2METBIRC3MYCCCND1MYCLCCNE1MYCNCD274MYO18ACD44NKX2-1CDK4NKX2-8CDK6PDCD1LG2CSNK2A1PDGFRADCUN1D1PIK3CAEGFRPNPERBB2PPARGFGFR1RPS6KB1FGFR2SOX2FGFR3TERTFGFR4TIAF1FLT3ZNF217GAS6	ALK RET ROS1 NTRK1 NTRK3 FGFR1 FGFR2 FGFR3 BRAF RAF1 ERG ETV1 ETV4 ETV5 ABL1 AKT3 AXL EGFR ERBB2 PDGFRA PPARG

Liquid Biopsy

A broad term to describe blood-based testing for genetic mutations

How 'liquid biopsies' work

Different sections of a tumor have different genetic scripts. Taking a biopsy from the tumor itself will tell you only about the DNA in one part of the tumor.

technicians isolate the DNA by

the nuclei of white blood cells.

removing red blood cells, platelets and

plasma. Technicians get the DNA from

Tumor cells die routinely just like other cells, and when they do, they shed DNA into a person's bloodstream. This means the bloodstream will contain DNA from all over the tumor, not just one section.

Molecular Subsets of Lung Cancer Defined by Driver Mutation

2016, Vol. 10(2) 113-129

The Biggest Discovery: EGFR Activating Mutations

Pao, Nature Reviews Cancer 10, 760-774

Anti-EGFR Therapy

Anti-EGFR Therapy

1st-Generation TKI: Gifitinib (Iressa) Erlotinib (Tarceva)

2nd-Generation TKI Afatinib (Gilotrif) Dacomitinib

In patients with EGFR mutant NSCLC, EGFR TKI are better than platinum-doublet chemotherapy

EGFR-Mutation-Positive

Mok TS, et al. N Engl J Med. 2009;361(10):947-957.

All patients will develop acquired resistance to EGFR TKI

Median 10.8 vs 5.4 months, HR 0.30, Pਜ਼ਰੁਲ਼ਰਸ਼

Maemondo, NEJM 2010

Mechanisms of Acquired Resistance to 1st/2nd Generation EGFR TKIs

Yu et al, CCR 2013

Anti-EGFR Therapy

1st-Line therapy:

Gifitinib (Iressa) Erlotinib (Tarceva)

Afatinib (Gilotrif) Dacomitinib

2nd-Line therapy: to target T790M mutation Osimertinib (Tagrisso)

Osimertinib vs Gefitinib/Erlotinib Randomized Trial (FLAURA)

- Primary endpoint: PFS
- Secondary endpoints: response rate, duration of response, disease control rate, depth of response, overall survival, patient reported outcomes, safety

Soria et al, NEJM 2018

Osimertinib vs Gefitinib/Erlotinib Progression-Free Survival

Soria, NEJM 2018

Acquired Resistance to Osimertinib

Targeted Therapy

EGFR

ALK rearrangement (Crizotinib, Brigatinib, Ceritinib, Alectinib, Lorlatinib)

ROS 1 rearrangement (Crizotinib, Ceritinib, Cabozantinib, Entrectinib)

HER2 (TDM1, Afatinib)

RET rearrangement (Cabozantinib, Vendetanib, Alectinib)

BRAF (Vemurafenib + combinmetinib or Debrafenib + trametinib)

C-MET (Crizotinib, Cabozantinib)

NTRK (Larotrectinib, Entrectinib)

Cancer Immunotherapy

- 1. Monoclonal antibody therapy (Passive, i.e. Bevacizumab)
- 2. Vaccination (NSCLC: MAGE A3, MUC-1, EGFR)
- **3.** Enhancement of antigen presentation (stimulation of Toll-like receptors 7, 8 or 9, dendritic cells or anti-CD40 agonistic antibody)
- 4. Cell based immunotherapy (Allogeneic SCT, CAR T-cell)
- **5.** Cytokines (for example, IL-2 or interferon-α)
- 6.Checkpoint inhibitors (Anti-CTLA4, -PD-1, -PD-L1)

Cancer Immunotherapy

PD1 Blockade for NSCLC 1st-Line

Keynote 24: Pembrolizumab for PDL1 > 50% in TCs

PD1 Blockade for NSCLC 1st-Line

Keynote 189

Keynote 407

PD1/PDL1 Blockade for NSCLC 2ND -Line

Checkmate 17 for SCC : Nivolumab

Checkmate 57 for non- SCC : Nivolumab

Keynote 10: Pembrolizumab

PDL1 Blockade for NSCLC 2ND -Line

OAK Trial: Atezolizumab PDL1 assessed in both TCs and ITCs

BMDACC LUNG / HEAD & NECK RESEARCH : NSCLC

As of FEB 2019

BMDACC LUNG / HEAD & NECK RESEARCH : NSCLC

BMDACC LUNG / HEAD & NECK RESEARCH : SCLC

As of FEB 2019

BMDACC LUNG / HEAD & NECK RESEARCH : HNC

As of FEB 2019

PD-1 Blockade: Immune-Mediated Toxicities

Occasionally(5% to 20%)

- Fatigue, headache, arthralgia, \bullet fevers, chills, lethargy
- **Diarrhea/colitis** •
 - Initiate steroids early, taper slowly
- Hepatitis, liver/pancreatic enzyme \bullet abnormalities

Pneumonitis •

Grade 3/4 toxicities uncommon Low grade reversible with steroids and discontinuation

Anemia

- Episcleritis/uveitis
- Nephritis Neuropathies, Guillain-Barré, myasthenia gravis Thrombocytopenia

- Rash: maculopapular, pruritus, ۲ vitiligo
 - Topical treatments
- Infusion reactions •
- Endocrinopathies: thyroid, adrenal, \bullet hypophysitis

- Pancreatitis ۰
- Nephritis
- Lymphadenopathy (sarcoid) Toxic epidermal necrolysis, Stevens-Johnson syndrome

Immune-Related Pneumonitis

11/15/2013: Prepneumonitis

1/21/14: Pneumonitis 2/21/14: Improved with steroids; taper completed 3/7/14

Immune-Related Pneumonitis

Radiologic Subtypes	Representative Image	Description
Cryptogenic organizing pneumonia-like (n = 5, 19%)		Discrete patchy or confluent consolidation with or without ai bronchograms Predominantly peripheral or subpleural distribution
Ground glass opacities (n = 10, 37%)		Discrete focal areas of increased attenuation Preserved bronchovascular markings
Interstitial (n = 6, 22%)		Increased interstitial markings, interlobular septal thickening Peribronchovascular infiltration, subpleural reticulation Honeycomb pattern in severe patient cases
Hypersensitivity (n = 2, 7%)		Centrilobular nodules Bronchiolitis-like appearance Tree-in-bud micronodularity
Pneumonitis not otherwise specified (n = 4, 15%)		Mixture of nodular and other subtypes Not clearly fitting into other subtype classifications

SCLC- Epidemiology

~ 10 % of all lung cancer cases in U.S.

25,000 estimated cases per year

Incidence decreasing globally

Male:female ratio ~ 1:1

SCLC represents one end of a spectrum of pulmonary neuroendocrine tumor characterized by

Grade (inverse correlation to differentiation)
 low: typical carcinoid
 moderate: atypical carcinoid
 high: LCNEC, SCLC

• Biologic behavior

• Response to cytotoxins

Clinical Presentation

Short duration of symptoms (\leq 3 mos) Endobronchial tumor (cough, wheeze, dyspnea, obstructive pneumonia, hemoptysis)

Regional extension (dysphagia, hoarseness, SVC syndrome, pain)

Clinical Presentation

Metastatic disease (abdominal pain,

vomiting, headache, focal neurologic deficits, seizure, bone pain)

Systemic symptoms (asthenia, anorexia, weight loss)

Paraneoplastic Syndromes

Endocrine:

Syndrome	Hormone
Hyponatremia	ADH
Cushing's	ACTH
Acromegaly	GHRP

Course of endocrine syndromes parallels course of cancer

Paraneoplastic Syndromes Neurologic:

Syndrome Lambert-Eaton [Cerebellar Degeneration/ Encephalitis/Neuropathy] Opsoclonus/myoclonus Retinal Blindness Stiff –person syndrome

Antibody Anti-VGCC [Anti-Hu, -CV2 ANNA-3, PCA-2] Anti-Ri Anti-recoverin Anti-amphiphysin

Successful treatment of cancer commonly has no impact on neurologic syndrome (Beukelaar J Oncol 2006)

SCLC – Natural History

VA Lung Group Study

Median survival (placebo): Distant Metastases 6 wks : Limited to chest 12 wks

NCI Autopsy series 30 days post-resection Mediastinal disease: 90% Distant metastatic disease: 63% (Matthews et al Cancer Chemother Rep 1973)

SCLC- Staging

- Prior to use of combination chemotherapy TNM staging not prognostic
- In modern era TNM staging used to identify stage I patients who may benefit from resection (T1-2, NO)
- Revision of 2-stage VALG system in common usage

SCLC- Treatment

- Limited Disease (LD) (35-40% of pts) (TNM stages I-III)
- Tumor confined to one hemithorax and regional lymph nodes
- Tumor must be encompassed by a tolerable radiation port

Treatment: Platinum-based chemo concurrently with XRT, followed by consolidation chemotherapy

SCLC- Treatment

Extensive Disease (ED)

- (\cong 60% of pts) (TNM stages wet IIIB and IV):
- Tumor outside the confines of LD
- Includes malignant pericardial and pleural effusion

Treatment: Platinum-based chemotherapy

SCLC s/p Etoposide/Carbo x 3

SCLC - Treatment

Prophylactic Cranial Irradiation

- Brain metastases in ≅ 40% of patients during course of disease.
- Probability of brain disease increases with increasing duration of survival.
- PCI significantly reduces rate of CNS relapse in randomized trials.

SCLC – Treatment

- **Prophylactic Cranial Irradiation**
- Meta analysis:

5% 3-year survival benefit for patients in "CR" (85% LD) (Auperin NEJM 1999)

 EORTC Phase III in ED responders : Symptomatic brain mets: 17% vs 41% (HR 0.27)
 Median PFS/OS 15/29 wks vs 12/23 wks (HR 0.68) (Slotman NEJM 2007)

Treatment Outcomes- Clinical Trials

	LD	ED
Overall response (%)	80-100	60-100
Complete response (%)	50-90	15-40
Median Survival (mos)	18-30	8-12
2-yr survival (%)	40-50	5-15
5-yr survival (%)		1-2