Acute Kidney Injury

Amandeep Khurana, MD Southwest Kidney Institute 66 yr white male w/ DM, HTN, CAD admitted to an OSH w/ E Coli UTI on 7/24/16, developed E Coli bacteremia and Shock (on vaso + levo) transferred to BUMC 7/26/16 w/

- No UO x 12 hrs (despite IVF)
- Cr 2 (baseline 0.9)

What's going on?

- Is this AKI?
- Could this have been diagnosed earlier?
- How does this change his outcome?
- What's happening at the level of the nephrons? What would a biopsy show?
- Can this be treated medically?
- Does this patient need dialysis?
- Will the patient survive after discharge?

Is this AKI?

What is AKI?

- abrupt (within 48 hours)
- absolute increase in Cr of ≥0.3 mg/dL
- increase in Cr of ≥50 percent
- oliguria of (< 0.5 mL/kg/hr) X >6 hrs

Caveats

- 1. only after volume status had been optimized
- 2. Urinary tract obstruction to be excluded (if oliguria was sole diagnostic criterion)

What is Acute Kidney Injury?

- 2001 : Acute Dialysis Quality Initiative (ADQI)
 - Risk: 1.5x inc in SCr, GFR dec 25%, UOP<0.5 ml/kg/h x 6h
 - Injury: 2x inc SCr, GFR dec 50%, UOP<0.5 ml/kg/h x 12h
 - Failure: 3x inc SCr, GFR dec 75%, UOP<0.5/kg/h x 24h, anuria x 12 hr
 - Loss: complete loss (inc need for RRT) > 4 wks
 - ESRD: complete loss (inc need for RRT) > 3 months
- 2007: Acute Kidney Injury Network (AKIN)
 - Modified RIFLE to include ΔSCr 0.3 mg/dL from baseline, within 48hr, based on 80% mortality risk (Chertow, JASN 2005)

	GFR criteria	Urine output criteria		
R isk	Increased SCreat x1.5 or GFR decrease >25 percent	UO <.5 mL/kg/h x 6 hr		
Injury	Increased SCreat x2 or GFR decrease >50 percent	UO <.5 mL/kg/h x 12 hr	High	
Failure	Increase SCreat x3 GFR decrease 75 percent OR SCreat ≥4 mg/dL Acute rise ≥0.5 mg/dL	UO <.3 mL/kg/h x 24 hr or Anuria x 12 hrs	sensitivity	
Loss ESKD	Persistent ARF = complete los End stage kidney di	High specificity		
ESKD	End stage kidney disease (>5 months)			

Bellomo, R, Ronco, C, Kellum, JA, et al. Acute renal failure-definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care 2004; 8:B204.

Could this have been diagnosed earlier?

All the definitions (including RIFLE) depend on a surrogate marker ie creatinine

functional versus biomarkers

	Functional Marker	Biomarker
Liver damage	Hypoalbuminemia Coagulopathy	SGOT SGPT GGT

functional versus biomarkers

	Functional Marker	Biomarker
Liver damage	Hypoalbuminemia Coagulopathy	SGOT SGPT GGT
Heart damage	Hypotension Arrhythmia	Troponin I Troponin T CK-MB

functional versus biomarkers

	Functional Marker	Biomarker
Liver damage	Hypoalbuminemia Coagulopathy	SGOT SGPT GGT
Heart damage	Hypotension Arrhythmia	Troponin I Troponin T CK-MB
Kidney damage	Creatinine BUN Cystatin C	KIM-1 NGAL

candidates for a renal troponin: kidney injury molecule-1 (kim-1)

- Transmembrane protein expressed in the proximal tubule.
- Expression is increased following ischemic damage
- Can be found 12 hours after renal insult

candidates for a renal troponin: kidney injury molecule-1 (kim-1)

- Transmembrane protein expressed in the proximal tubule.
- Expression is increased following ischemic damage
- Can be found 12 hours after renal insult

How does this change his outcome?

Mortality following Cardiac Surgery

Odds-Ratio for Death

- Unadjusted: 39 (95% CI: 32-48)
- Adjusted for comorbidities and postoperative complications: 7.9 (95% CI: 6-10)

Chertow, GM et al Am J Med 1998;104:343

AKI and Mortality(Brigham and Womens, 9210 adults)

Multivariable Odds Ratio for Death

• AKI (Δ in S _{Cr} >0.5)	6.5	<0.0001
•Age (per 10 yr)	1.7	<0.0001
•CKD	2.5	<0.0001
•CV dis.	1.5	<0.04
 Respiratory dis 	3	<0.0001
•GI dis.	2.4	<0.001
•Cancer	2.9	<0.0001
 Infection 	7.5	<0.0001

Chertow et al, JASN 16:3365-70; 2005

LEVY, EM, VISCOLI, CM, HORWITZ, RI: The effect of acute renal failure on mortality—A cohort analysis. **JAMA** 1996 **275**: 1489–1494

Impact of ARF on Mortality in Critically III Patients

Metnitz, P et al Crit Care Med 2002;30:2051

What's happening at the level of the nephrons?

Proinflammatory response

Excessive inflammation causing collateral damage (tissue injury)

Immunosuppression with enhanced susceptibility to secondary infections

Figure 1.

Sepsis and AKI pathophysiological interaction in SA-AKI. Reprinted with permission from Romanovsky et al.⁹²

Table 3 Potential pathophysiological mechanisms of septic AKI

Pro-inflammatory state

- Complement and coagulation activation
- Protease activation (heparan sulfate, elastase)
- Free radical formation
- Pro-inflammatory cytokine production (IL-1, IL-6, IL-18, TNF-α)
- Cell activation (neutrophil, macrophage, platelet, endothelial cell)

Anti-inflammatory state

- Anti-inflammatory cytokine (IL-10)
- Reduced phagocytosis and chemotaxis
- Deranged immune function (lymphocyte apoptosis)

Dysregulation of microcirculation

- Vasodilation-induced glomerular hypoperfusion
- Abnormal blood flow within the peritubular capillary network

DAMPs damage associated molecular pattern, PAMPs pathogen associated molecular pattern

Arrows showing epithelial vacuolization with damage of brush border.

Copyright @2003 by the National Kidney Foundation

Days after insult

Adapted with permission from: Sutton, TA, Fisher, CJ, Molitoris, BA, et al. Microvascular endothelial injury and dysfunction during ischemic acute renal failure. Kidney Int 2002; 62:1539.

Can this be treated medically?

Loop diuretics

The Sodium-Potassium Exchange Pump

Furosemide

I. Furosemide as an Innovative Therapeutic Agent

Furosemide and ethacrynic acid arrived on the clinical scene in the 1960s. They quickly became known as "loop diuretics" and "high-ceiling diuretics." The former appellation refers loosely to the site of action of these agents within the nephron—the loop of Henle—and the latter to the fact that the maximum diuresis achieved with these drugs far exceeded that obtained with the thiazide diuretics.

Before the loop diuretics, the thiazide and organic mercurial diuretics had been used to good effect as agents for mobilizing edema fluid in congestive heart failure, cirrhosis, and nephrosis. Furosemide and ethacrynic acid were found to be particularly effective in cases that were refractory to the thiazides and mercurials. They were also very effective as emergency intravenous treatments for pulmonary and cerebral edemas and in barbiturate poisoning: diuresis occurred within 15 min, whereas 1–3 h were required for thiazide and mercurial agents to take effect (Stason et al., 1966; Kirkendall and Stein, 1968; Cannon and Kilcoyne, 1969; Modell et al., 1976; Weiner and Mudge, 1985). Unlike the mercurial diuretics, furosemide and ethacrynic acid continued to be effective even when electrolyte and acid–base disturbances were present.

Furosemide has come to be prescribed much more frequently than ethacrynic acid, because of a considerably lower incidence of gastrointestinal side effects and a less steep dose–response curve (Weiner and Mudge, 1985). Loop diuretics, if not carefully administered, may be given in overdose and produce orthostatic hypoten-

R. A. Maxwell et al., *Drug Discovery* © The Humana Press Inc. 1990

furosemide

decreased activity of the ascending loop of Henle

decreases renal oxygen demand by the kidney

better align supply/demand in ischemia

Retrospective review of ICU patients Diuretic responsiveness determined survival

Mehta, R. L. et al. JAMA 2002;288:2547-2553.

- 338 with dialysis dependent ARF
- Randomized to high dose furosemide (2,000 mg/day) vs placebo
- End-point length of dialysis
- No improvement of survival, length of dialysis, number of dialysis sessions
- Shorter time to 2 liters/day of urine output

- In healthy volunteers low dose dopamine increases RBF and induces diuresis
- Patients in the intensive care unit do not respond this way.

45 (144) 20 (10) 62 (107) 6 (8) 56	249 (147) 23 (12) 66 (108) 7 (9) 56	4 (-28 to 36) 3 (-0.8 to 6.8) 4 (-21 to 29) 1 ((-1 to 3) 0 (-16 to 16)
45 (144) 20 (10) 52 (107) 6 (8) 56	249 (147) 23 (12) 66 (108) 7 (9) 56	4 (-28 to 36) 3 (-0.8 to 6.8) 4 (-21 to 29) 1 ((-1 to 3) 0 (-16 to 16)
20 (10) 62 (107) 6 (8) 56	23 (12) 66 (108) 7 (9) 56	3 (-0.8 to 6.8) 4 (-21 to 29) 1 ((-1 to 3) 0 (-16 to 16)
62 (107) 6 (8) 56	66 (108) 7 (9) 56	4 (-21 to 29) 1 ((-1 to 3) 0 (-16 to 16)
6 (8) 56	7 (9) 56	1 ((-1 to 3) 0 (-16 to 16)
56	56	0 (–16 to 16)
56	56	0 (–16 to 16)
26		
25	10	
30	40	5 (-10 to 20)
37 (40)	50 (59)	13 (-1 to 27)
71 (81)	72 (77)	1 (-20 to 22)
96 (101)†	92 (72)†	4 (-19 to 27)
99 (83)†	109 (95)†	10 (-11 to 31)
	37 (40) 71 (81) 96 (101)† 99 (83)†	37 (40) 50 (59) 71 (81) 72 (77) 96 (101)† 92 (72)† 99 (83)† 109 (95)†

ANZICS Clinical Trials Group. Lancet 2000;356:2139-47. Kellum JA, Decker JM.Crit Care 2001; 29:1526-31. • RCT of 380 ICU patients

ANZICS Clinical Trials Group. Lancet 2000;356:2139-47. Kellum JA, Decker JM.Crit Care 2001; 29:1526-31.

Dopamine

dopamine: the RCT

- 328 ICU patients with SIRS
- Early signs of renal failure
 - < 0.5 cc/kg/hr
 - Cr > 1.7 mg/dL without a prior history of renal disease
 - A rise in serum Cr of 0.9 mg/dL in less than 24 hours
- The primary outcome was peak serum creatinine

- Secondary end points:
 - Furosemide dose 192 mg vs 268 mg p=0.39
 - Duration of mechanical ventilation 10 vs 11 p=0.63
 - Duration of ICU stay 13 vs 14 p=0.67
 - Survival to hospital discharge 92 vs 97 p=0.66

meta-analysis

- Kellum and Decker searched MedLine (English and non-English literature) for every article on human trials with dopamine for the treatment or prevention of ARF from 1966 to 1999.
- They included 58 studies with 2149 patients

- A. Exclude radiocontrast studies
- B. Limited to heart studies
- C. Excludes studies in which had abnormal control groups or increased variance

S3 segment of PT

- increases cortical blood
- cortical blood flow increases GFR
- increases renal oxygen demand

complications of low-dose dopamine

- Increase arrhythmias
- Increased myocardial oxygen demand
- Gut ischemia
- Suppressed respiratory drive
- Increased sensitivity to radiocontrast agents
- Decreases in T-cell activity

Fenoldapam

dopamine 2.0: fenoldapam

- Isolated DA-1 activity
- Licensed as an IV anti-hypertensive
- Increases medullary blood flow more than cortical blood flow
 - Improved oxygenation
 - Does not increase renal work

- 155 patients randomized within 24 hours of 50% increase in Cr
- Primary end-point incidence of need-fordialysis and/or survival at 21 days
- Fenoldapam or half normal saline for 72 hours
- Protocolized definition of need-for-dialysis

Tumlin JA, Finkel KW, Murray PT, Et al. Am J Kidney Dis. 2005; 46:26-34.

Tumlin JA, Finkel KW, Murray PT, Et al. Am J Kidney Dis. 2005; 46:26-34.

- 300 patients with SEPSIS and no signs of AKI
 - Non-oliguric
 - -Cr < 1.7
- Randomized to <u>prophylactic</u> fenoldapam vs placebo

Morelli et al. Prophylactic Fenoldopam for Renal Protection in Sepsis: A Randomized, Double-Blind, Placebo-Controlled Pilot Trial.Crit Care Med. 2005;33(11):2451-2456.

Prophylaxis is a way to get around the problem of late diagnosis due to the lack of an established biomarker.

Therapeutic targets in patients with or at risk of septic acute kidney injury, physiology, and current evidence

Targets	Physiologic Renal Effects	Clinical Renal Effects
MAP 80–85 vs 65–70 mm Hg	Higher MAP increases renal perfusion pressure and blood flow	SEPSISPAM trial: lower need for RRT with higher blood pressure target in patients with chronic hypertension ²⁷
CVP >12 mm Hg	Renal perfusion pressure (MAP – CVP) decreases when CVP increases. Elevated CVP increase intratubular pressure, which counteracts GFR	Elevated CVP (>12 mm Hg) is associated with the development or progression of AKI in observational studies ^{26,38}
Protocol-based EGDT ²⁸	NA	ARISE and ProCESS trials: no effect on mortality or RRT requirement compared with "usual care" ^{31,32}
Hemoglobin 90 vs 70 g/L	Increased oxygen delivery to kidney tubular cells	TRISS trial: no effect on dialysis-free survival with a target hemoglobin of 90 g/L compared with a target of 70 g/L ⁴⁷
Vasopressin	Increase MAP; maintain GFR by mainly contracting the efferent arteriole	VASST: no effect on mortality; Prevented AKI progression and need for RRT in post hoc analysis ^{39,40}
RRT	NA	Observational data; better renal recovery with continuous than with intermittent RRT; should be initiated when fluid balance cannot be managed with diuretics alone ^{48,54}

Future therapies					
Therapy	Mechanism	Evidence			
Recombinant human soluble thrombomodulin	Reduce thrombin mediated clotting. Enhance protein C activation. Inactivate high- mobility group protein B1.	Phase 2b clinical trial in patients with sepsis and disseminated intravascular coagulation: Trend toward lower 28-day mortality. (Vincent 2013 2070–2079).			
Acetylsalicylic acid	Induce synthesis of antiinflammatory molecules (lipoxins, resolvins, protectins).	Associated with reduced ICU mortality in observational studies. ^{62,63} Protected against endotoxin- induced AKI in animal model. ⁶⁴			
Alkaline phosphatase	Endogenous enzyme. Detoxify endotoxins through dephosphorylation. iNOS inhibitor.	Phase 2a clinical trial: Improved creatinine clearance. Trend toward reduced RRT requirements. Decreased ICU duration of stay. ⁶⁰			
Anti-histone antibody	Block cytotoxic extracellular histones released during sepsis.	Prevented death and AKI in experimental sepsis. ⁶⁷			
Polymyxin B hemoperfusion	Polymyxin B adsorbed to a polystyrene fiber in a hemoperfusion device has the ability to bind and neutralize lipopolysaccharide. Inactivates circulating proapoptotic factors.	EUPHAS trial: Improved hemodynamics, lung function, SOFA score and survival at 28 d in patients with intraabdominal sepis. ⁶⁸			

Does this patient need dialysis?

Accepted indications

- Refractory fluid overload
- Hyperkalemia (plasma potassium concentration >6.5 meq/L) or rapidly rising potassium levels
- Signs of uremia, eg pericarditis, neuropathy, or an otherwise unexplained AMS
- Metabolic acidosis (pH less than 7.1)
- Certain alcohol and drug intoxications
- Volume overload?
- BUN?

OR 2.07 (95% CI 1.27–3.37).

Chertow GM, et al. Fluid accumulation, survival and recovery of kidney function in critically ill patients with AKI. KI 2009; 76:422.

Figure 2 | Mortality rate by final fluid accumulation relative to baseline weight and stratified by dialysis status.

When should we start RRT?
	Study design	Clinical setting	Definition of timing	Confounding CRRT factors	Survival advantage early group
Bouman [8]	RCT (<i>n</i> = 105)	Oliguric ARF and MOF	Early: creatinine clearance < 20 ml/min and <12 h after onset of oliguria (<180 ml in 6 h) Late: urea ≥ 40 mmol/l or severe pulmonary edema ^a after onset of oliguria	No	No
Jiang [28]	RCT (n=37)	Severe pancreatitis renal function is not reported	Early: <48 h after onset of abdominal pain Late: >96 h after onset of abdominal pain	No	Yes
Gettings [31]	Retrospective $(n = 100)$	Post trauma	Early: urea < 60 mg/dl ^b Late: urea > 60 mg/dl	Various CRRT modes Dose not reported	Yes
Piccini [32]	Retrospective $(n=80)$	Sepsis with oliguric ARF and ALI	Early: <12 h after ICU admission Late: urea > 35 mmol/l or creatinine > 600 μmol/l	Dose early >> dose late	Yes
Elahi [30]	Retrospective (n = 64)	Post cardiac surgery	Early: oliguria < 100 ml in 8 h Late: urea > 30 mmol/l or sCr $> 250 \mu$ mol/l	Dose not reported	Yes
Demirkilic [29]	Retrospective (n = 61)	Post cardiac surgery	Early: oliguria $< 100 \text{ ml}$ in 8 h Late: sCr $> 5 \text{ mg/dl}^{c}$	Dose not reported	Yes

Table 1 Clinical studies on timing of initiation of renal replacement therapy (RRT) in acute kidney injury (AKI) and patient outcome

- non-randomization of groups,
- differences in indications for initiation
- lack of inclusion in the analysis of patients with AKI who did not receive RRT because they recovered renal function or died

Meta Analysis: All 15 studies

Meta Analysis

Karvellas, Constantine J., et al. "A comparison of early versus late initiation of renal replacement therapy in critically ill patients with acute kidney injury: a systematic review and meta-analysis." *Crit Care* 15.1 (2011): R72.

So, when DO you start CRRT?

- No evidence based criteria
- Accepted criteria (hyperkalemia etc)
- Definitely before "overt" uremic signs and symptoms
- BUN 80-100....no hard data
- Fluid overload < 10%....no hard data

Will the patient survive after discharge?

Wu et al, acute on chronic kidney injury at hospital discharge is associated with long-term dialysis and mortality, KI, Aug 2011

Amandeep Khurana

Clinical Assistant Professor, University of Arizona Transplant Nephrologist, Southwest Kidney Institute